Anmelden

In an organic molecule, free rotation about the carbon-carbon single bond results in energetically different conformers of the molecule. Due to this rotation, called the internal rotation, ethane has two major conformations — staggered and eclipsed.

Staggered conformation is a low energy and more stable conformation with the C-H bonds on the front carbon placed at 60°dihedral angles relative to the C-H bonds on the back carbon, leading to a reduced torsional strain. In staggered ethane, the bonding molecular orbital of one C-H bond interacts with the antibonding molecular orbital of the other, thereby further stabilizing the conformation. The rotation of farther carbon while keeping the carbon nearer to the observer stationary generates an infinite number of conformers. At 0° dihedral angles, the C-H groups cover one another to form an eclipsed conformation. This conformation has about 12 kJ/mol more torsional strain than the staggered conformation and hence is less stable. Ethane molecules rapidly interconvert between several staggered states while passing through the higher energy eclipsed states. The molecular collisions provide the energy required to cross this torsional barrier.

Similar to ethane, propane also has two major conformers: the stable staggered conformer (low energy) and the unstable eclipsed conformer (higher energy).

Tags

ConformationsEthanePropaneOrganic MoleculeCarbon carbon Single BondRotationInternal RotationStaggered ConformationEclipsed ConformationTorsional StrainBonding Molecular OrbitalAntibonding Molecular OrbitalDihedral AnglesTorsional Barrier

Aus Kapitel 3:

article

Now Playing

3.6 : Conformations of Ethane and Propane

Alkane und Cycloalkane

13.3K Ansichten

article

3.1 : Struktur der Alkane

Alkane und Cycloalkane

26.2K Ansichten

article

3.2 : Konstitutionelle Isomere von Alkanen

Alkane und Cycloalkane

17.3K Ansichten

article

3.3 : Nomenklatur der Alkane

Alkane und Cycloalkane

20.5K Ansichten

article

3.4 : Physikalische Eigenschaften von Alkanen

Alkane und Cycloalkane

10.5K Ansichten

article

3.5 : Newman-Projektionen

Alkane und Cycloalkane

15.8K Ansichten

article

3.7 : Konformationen von Butan

Alkane und Cycloalkane

13.4K Ansichten

article

3.8 : Cycloalkane

Alkane und Cycloalkane

11.8K Ansichten

article

3.9 : Konformationen von Cycloalkanen

Alkane und Cycloalkane

11.3K Ansichten

article

3.10 : Konformationen von Cyclohexan

Alkane und Cycloalkane

11.7K Ansichten

article

3.11 : Stuhlkonformation von Cyclohexan

Alkane und Cycloalkane

13.9K Ansichten

article

3.12 : Stabilität von substituierten Cyclohexanen

Alkane und Cycloalkane

12.1K Ansichten

article

3.13 : Disubstituierte Cyclohexane: cis-trans-Isomerie

Alkane und Cycloalkane

11.5K Ansichten

article

3.14 : Verbrennungsenergie: Ein Maß für die Stabilität von Alkanen und Cycloalkanen

Alkane und Cycloalkane

6.1K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten