Anmelden

Historical perspective

In 1896, the German chemist Paul Walden discovered that he could interconvert pure enantiomeric (+) and (-) malic acids through a series of reactions. This conversion suggested the involvement of optical inversion during the substitution reaction. Further, in 1930, Sir Christopher Ingold described for the first time two different forms of nucleophilic substitution reactions, which are known as SN1 (nucleophilic substitution unimolecular) and SN2 (nucleophilic substitution bimolecular) reaction.

Nucleophilic substitution reaction

The word “substitution” is derived from the Latin word “substituō,” which means “to take the same place”. Nucleophilic substitution reactions are reactions in which a nucleophile, a Lewis base, reacts with an electrophile, a Lewis acid. The nucleophile substitutes the halogen atom bonded to the carbon of the molecule, releasing a stable ion called the leaving group. These reaction motifs are very similar to the Lewis acid/base reactions and involve very similar species:

The electron-rich species analogous to the Lewis base is the nucleophile.
The electron-deficient species analogous to the Lewis acid are electrophile.

General reaction:

Figure1

Factors affecting the nucleophilic substitution reaction

Various factors govern the pathway of the nucleophilic substitution reaction:
- Nature of the substrate (primary, secondary, and tertiary alkyl halides)
- Strength of the nucleophile
- Strength of the electrophile
- Nature of the leaving group
- Temperature
- Solvent (protic vs. aprotic solvent)

Tags
Nucleophilic Substitution ReactionsHistorical PerspectivePaul WaldenEnantiomeric Malic AcidsOptical InversionSir Christopher IngoldSN1 ReactionSN2 ReactionSubstitutionNucleophileLewis BaseElectrophileLewis AcidLeaving GroupGeneral ReactionFactors Affecting Nucleophilic Substitution ReactionNature Of The Substrate

Aus Kapitel 6:

article

Now Playing

6.2 : Nucleophilic Substitution Reactions

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

15.0K Ansichten

article

6.1 : Alkylhalogenide

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

14.9K Ansichten

article

6.3 : Nukleophile

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

12.4K Ansichten

article

6.4 : Elektrophile

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

9.8K Ansichten

article

6.5 : Verlassen von Gruppen

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

7.1K Ansichten

article

6.6 : Karbationen

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

10.5K Ansichten

article

6.7 : SN2 Reaktion: Kinetik

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

7.8K Ansichten

article

6.8 : SN2 Reaktion: Mechanismus

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

13.3K Ansichten

article

6.9 : SN2 Reaktion: Übergangszustand

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

9.0K Ansichten

article

6.10 : SN2 Reaktion: Stereochemie

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

8.8K Ansichten

article

6.11 : SN1 Reaktion: Kinetik

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

7.4K Ansichten

article

6.12 : SN1 Reaktion: Mechanismus

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

11.0K Ansichten

article

6.13 : SN1 Reaktion: Stereochemie

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

8.0K Ansichten

article

6.14 : Vorhersage von Produkten: SN1 vs. SN2

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

13.0K Ansichten

article

6.15 : Eliminationsreaktionen

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

12.5K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten