Anmelden

One of the critical aspects of the E1 reaction mechanism, as also observed in E2, is the regiochemistry, with multiple regioisomers obtained as products. In the example discussed, the presence of water as a weak base favors elimination over substitution to generate two alkenes. Given that alkenes’ stability increases with the number of alkyl groups across the double bond, typically, E1 reactions lead to the Zaitsev product, for this is more substituted and stable than the Hofmann product. Further, the transition state intermediate in the Zaitsev product pathway has lower energy, confirming that this Zaitsev product is both thermodynamically stable and kinetically favored.

The E1 mechanism is independent of the nature of the base; hence, the regioselectivity of E1 eliminations is not tailorable using sterically hindered bases. An instance of this is the formation of Zaitsev products irrespective of using a bulky base like potassium tert-butoxide. However, at times, the expected alkene is not obtained as the primary product, owing to the E1 mechanism of a carbocation intermediate where a 1,2-hydride shift can occur. This leads to the more stable tertiary carbocation, generating a tetrasubstituted alkene instead.

In general, the E1 reactions are stereoselective, as they favor the formation of the E or trans alkene over the Z or cis isomer. However, they are not stereospecific like E2 reactions and do not factor in the planarity of the hydrogen and halogen. Here, it depends on the orientation of the neighboring vacant p orbital on the positively charged carbon and its adjacent carbon–hydrogen σ bond that ought to be parallel for forming an optimal π bond. The intermediate carbocation in the mechanism of E1 satisfies this requirement in two configurations: (a) the less stable syn conformation, which is sterically strained, and (b) the more stable anti conformation, where the bulky groups are farther apart. Consequently, the syn conformation leads to the minor product of the Z-alkene, which is less stable, and the anti conformation yields the more stable E-alkene with less steric hindrance as the primary product.

Tags
E1 ReactionStereochemistryRegiochemistryRegioisomersWater As A Weak BaseEliminationSubstitutionAlkenesZaitsev ProductHofmann ProductThermodynamically StableKinetically FavoredNature Of The BaseSterically Hindered BasesAlkene FormationCarbocation Intermediate12 hydride ShiftTertiary CarbocationTetrasubstituted AlkeneStereoselectiveE Or Trans AlkeneZ Or Cis Isomer

Aus Kapitel 6:

article

Now Playing

6.19 : E1 Reaction: Stereochemistry and Regiochemistry

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

8.8K Ansichten

article

6.1 : Alkylhalogenide

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

14.9K Ansichten

article

6.2 : Nukleophile Substitutionsreaktionen

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

15.0K Ansichten

article

6.3 : Nukleophile

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

12.4K Ansichten

article

6.4 : Elektrophile

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

9.8K Ansichten

article

6.5 : Verlassen von Gruppen

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

7.1K Ansichten

article

6.6 : Karbationen

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

10.5K Ansichten

article

6.7 : SN2 Reaktion: Kinetik

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

7.7K Ansichten

article

6.8 : SN2 Reaktion: Mechanismus

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

13.2K Ansichten

article

6.9 : SN2 Reaktion: Übergangszustand

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

9.0K Ansichten

article

6.10 : SN2 Reaktion: Stereochemie

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

8.8K Ansichten

article

6.11 : SN1 Reaktion: Kinetik

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

7.4K Ansichten

article

6.12 : SN1 Reaktion: Mechanismus

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

11.0K Ansichten

article

6.13 : SN1 Reaktion: Stereochemie

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

8.0K Ansichten

article

6.14 : Vorhersage von Produkten: SN1 vs. SN2

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

13.0K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten