JoVE Logo

Anmelden

Complex carbohydrates consumed cannot be absorbed into the small intestine in their original form. First, they must be hydrolyzed to a monosaccharide form such as glucose or galactose. These monosaccharides are then transported across the intestinal membrane and into the blood via transcellular transport. The intestinal epithelial cells allow the movement of these monosaccharides with a defined 'entry' through membrane transporter proteins present on their apical membrane and 'exit' via the basolateral membrane proteins.

The classical pathway for this absorption across the intestinal membrane is mediated by a symporter, sodium-glucose linked transporter 1 (SGLT1). SGLT1 is present on the apical membrane of intestinal epithelial cells and couples the transport sodium ions and the monosaccharides l(glucose or galactose) into the cell.

The absorption of glucose in the small intestinal epithelium is electrogenic, depending on the membrane potential of the intestinal epithelial cells that regulate the activity of SGLT1. The maintenance of membrane potential depends on the activities of the channels and transporters. In the small intestine's epithelial cells, the potassium channels provide the driving force required for sodium-dependent uptake of glucose into the intestinal epithelial cells. The glucose uptake is further driven by the sodium transmembrane gradient and membrane potential maintained by the sodium-potassium pump. Thus, the sodium-potassium pump and potassium channel play a vital role in the glucose movement into the cell. The accumulated glucose is transported via GLUT2 transporter protein on the basolateral membrane.

Metabolic disorders like diabetes show increased expression of SGLT1, contributing to increased glucose absorption in the small intestine. Therefore, reducing the SGLT1-mediated transport of glucose appears to be one of the therapeutic targets for diabetes treatment.

Tags

Glucose AbsorptionSmall IntestineCarbohydrate HydrolysisMonosaccharide TransportSGLT1Sodium glucose SymporterMembrane PotentialPotassium ChannelsGLUT2DiabetesGlucose Absorption Regulation

Aus Kapitel 13:

article

Now Playing

13.13 : Glukoseabsorption im Dünndarm

Membrantransport und aktive Transporter

30.9K Ansichten

article

13.1 : Die Bedeutung des Membrantransports

Membrantransport und aktive Transporter

20.1K Ansichten

article

13.2 : Membrantransporter

Membrantransport und aktive Transporter

10.0K Ansichten

article

13.3 : Erleichterter Transport

Membrantransport und aktive Transporter

10.6K Ansichten

article

13.4 : Primärer aktiver Transport

Membrantransport und aktive Transporter

9.4K Ansichten

article

13.5 : ATP-getriebene Pumpen I: Ein Überblick

Membrantransport und aktive Transporter

7.7K Ansichten

article

13.6 : ATP-getriebene Pumpen II: P-Typ-Pumpen

Membrantransport und aktive Transporter

4.4K Ansichten

article

13.7 : ATP-getriebene Pumpen III: V-Pumpen

Membrantransport und aktive Transporter

3.5K Ansichten

article

13.8 : ABC Transporter: Exporter

Membrantransport und aktive Transporter

4.1K Ansichten

article

13.9 : ABC-Transporter: Importer

Membrantransport und aktive Transporter

2.7K Ansichten

article

13.10 : Glukose Transporter

Membrantransport und aktive Transporter

22.2K Ansichten

article

13.11 : Sekundärer aktiver Transport

Membrantransport und aktive Transporter

6.6K Ansichten

article

13.12 : Transzellulärer Transport von gelösten Stoffen

Membrantransport und aktive Transporter

3.3K Ansichten

article

13.14 : pH-Regulierung im Magen

Membrantransport und aktive Transporter

5.4K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten