Anmelden

Mechanically-gated ion channels are proteins found in eukaryotic and prokaryotic cell membranes that open in response to mechanical stress. Tension, compression, swelling, and shear stress can alter the conformation of the protein, opening a transmembrane channel that allows the passage of ions for signal transmission. In eukaryotes, mechanically-gated channels are distributed in several regions like the neurons, lungs, skin, bladder, and heart, where they play critical roles in numerous physiological and pathophysiological processes.

In 2021 the Nobel Prize in Physiology or Medicine was awarded to David Julius and Ardem Patapoutian for their discovery and advancement of the knowledge of mechanically-gated ion channels, TRP, and Piezo channels.

David Julius discovered the presence of transient receptor potential (TRP) channels are expressed in many cell types and tissues. Some members of this large family of proteins act like thermometers involved in hot and cold sensations. Like the TRPV1, it gets activated by several factors such as temperature higher than 43 ℃, allyl isothiocyanate found in wasabi and mustard, and capsaicin, the hot component of peppers. So when we eat something spicy, the intense heat generated causes sweating. This is because the channel gets activated by capsaicin, allowing sodium and calcium ions to flow through it into the cell. This triggers electrical activity that sends messages of spice sensation and pain to the brain.

Ardem Patapoutian worked on the Piezo channels, the novel class of mechanosensitive ion channels. He discovered that these channels are required for the perception of touch and proprioception. Abnormalities in the functioning of these channels can cause muscular and neuronal degeneration, cardiac myopathies, hypertension, and cancer. In certain cancers, the upregulation of Piezo channels allows calcium ions influx, thereby modulating key calcium-dependent signaling pathways associated with cancer progression.

Tags
Mechanically gated Ion ChannelsEukaryoticProkaryoticCell MembranesMechanical StressTensionCompressionSwellingShear StressConformational ChangeSignal TransmissionNeuronsLungsSkinBladderHeartPhysiological ProcessesPathophysiological ProcessesNobel PrizeDavid JuliusArdem PatapoutianTransient Receptor Potential TRP ChannelsThermometersTemperatureWasabiMustardCapsaicinSpicy SensationPainPiezo ChannelsMechanosensitive Ion ChannelsTouchProprioceptionMuscular DegenerationNeuronal DegenerationCardiac MyopathiesHypertensionCancerCalcium Signaling

Aus Kapitel 14:

article

Now Playing

14.5 : Mechanisch gesteuerte Ionenkanäle

Kanäle und die elektrischen Eigenschaften von Membranen

6.0K Ansichten

article

14.1 : Aquaporine

Kanäle und die elektrischen Eigenschaften von Membranen

4.6K Ansichten

article

14.2 : Nicht gesteuerte Ionenkanäle

Kanäle und die elektrischen Eigenschaften von Membranen

6.5K Ansichten

article

14.3 : Liganden-gesteuerte Ionenkanäle

Kanäle und die elektrischen Eigenschaften von Membranen

12.0K Ansichten

article

14.4 : Spannungsgesteuerte Ionenkanäle

Kanäle und die elektrischen Eigenschaften von Membranen

7.7K Ansichten

article

14.6 : Neuronale Struktur

Kanäle und die elektrischen Eigenschaften von Membranen

12.1K Ansichten

article

14.7 : Ruhemembranpotential

Kanäle und die elektrischen Eigenschaften von Membranen

16.6K Ansichten

article

14.8 : Abbau des Ruhepotentials

Kanäle und die elektrischen Eigenschaften von Membranen

4.5K Ansichten

article

14.9 : Aktionspotenzial

Kanäle und die elektrischen Eigenschaften von Membranen

7.2K Ansichten

article

14.10 : Kanal Rhodopsine

Kanäle und die elektrischen Eigenschaften von Membranen

2.5K Ansichten

article

14.11 : Patch Clamp

Kanäle und die elektrischen Eigenschaften von Membranen

5.2K Ansichten

article

14.12 : Elektrische Synapsen

Kanäle und die elektrischen Eigenschaften von Membranen

7.8K Ansichten

article

14.13 : Chemische Synapsen

Kanäle und die elektrischen Eigenschaften von Membranen

8.3K Ansichten

article

14.14 : Erregende und hemmende Wirkungen von Neurotransmittern

Kanäle und die elektrischen Eigenschaften von Membranen

9.2K Ansichten

article

14.15 : Muskelkontraktion

Kanäle und die elektrischen Eigenschaften von Membranen

5.9K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten