JoVE Logo

Anmelden

8.9 : Force and Potential Energy in One Dimension

Force can be calculated from the expression for potential energy, which is a function of position. The component of a conservative force, in a particular direction, equals the negative of the derivative of the corresponding potential energy with respect to the displacement in that direction. For regions where potential energy changes rapidly with displacement, the work done and force is maximum. Also, when force is applied along the positive coordinate axis, the potential energy decreases with an increase in displacement. Hence, force and the derivative of potential energy with respect to displacement have opposite signs.

For instance, if the potential energy of a particle undergoing one-dimensional motion along the x-axis is

Equation1

where c = 8 N/m3, what will the force be for the given potential energy? Here, the known quantity is potential energy. The unknown quantity force needs to be calculated.

Equation1

Incorporating the value of potential energy in the above expression, the force along the x-direction is calculated to be −cx3. Substituting the value of c, the force is calculated to be −8x3.

The potential energy function for the force between two atoms in a diatomic molecule is approximately given by

Equation1

where a and b are constants and x is the distance between the atoms. If the dissociation energy of the molecule is

Equation1

what is the value of D? Here, the known quantity is the potential energy. The unknown quantity is the dissociation energy of the molecule. Substituting the potential energy function, we get the expression for force. Since the net force is zero at equilibrium, we get

Equation1

Now, the value of x6 is substituted in the expression for potential energy. Since potential energy at infinity is zero, the dissociation energy of the molecule is calculated to be b2/4a.

This text is adapted from Openstax, University Physics Volume 1, Section 8.4: Potential Energy Diagrams and Stability.

Tags

ForcePotential EnergyOne dimensional MotionConservative ForceWorkDisplacementDiatomic MoleculeDissociation Energy

Aus Kapitel 8:

article

Now Playing

8.9 : Force and Potential Energy in One Dimension

Potential Energy and Energy Conservation

5.3K Ansichten

article

8.1 : Potentielle Gravitationsenergie

Potential Energy and Energy Conservation

17.1K Ansichten

article

8.2 : Elastische potentielle Energie

Potential Energy and Energy Conservation

17.4K Ansichten

article

8.3 : Einsparung mechanischer Energie

Potential Energy and Energy Conservation

15.5K Ansichten

article

8.4 : Arbeiten, die mit äußerer Kraft an einem System durchgeführt werden

Potential Energy and Energy Conservation

2.0K Ansichten

article

8.5 : Konservative Kräfte

Potential Energy and Energy Conservation

11.8K Ansichten

article

8.6 : Nicht-konservative Kräfte

Potential Energy and Energy Conservation

7.4K Ansichten

article

8.7 : Energieeinsparung

Potential Energy and Energy Conservation

8.7K Ansichten

article

8.8 : Energieerhaltung: Anwendung

Potential Energy and Energy Conservation

6.4K Ansichten

article

8.10 : Kraft und potentielle Energie in drei Dimensionen

Potential Energy and Energy Conservation

4.8K Ansichten

article

8.11 : Energiediagramme - I

Potential Energy and Energy Conservation

4.9K Ansichten

article

8.12 : Energiediagramme - II

Potential Energy and Energy Conservation

4.6K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten