Anmelden

When two or more objects collide with each other, they can stick together to form one single composite object (after collision). The total mass of the object after the collision is the sum of the masses of the original objects, and it moves with a velocity dictated by the conservation of momentum. Although the system's total momentum remains constant, the kinetic energy decreases, and thus such a collision is an inelastic collision. Most of the collisions between objects in daily life are inelastic in nature. Some examples of inelastic collision are:

  1. A plastic ball dropped from a shelf, and it is unable to rise to its original height
  2. An accident between two vehicles on the road or a truck hitting a tree

In an inelastic collision, the final kinetic energy tends to decrease and remains lower than the initial kinetic energy of the system.

In some special cases, multiple objects collide, stick together, and remain motionless after the collision. Since the objects are all motionless after the collision, the final kinetic energy is also zero, and thus the loss of kinetic energy is at a maximum. This is a perfectly inelastic collision. For example, when a mud ball is thrown against the wall, it sticks to the wall and loses maximum kinetic energy.

This text is adapted from Openstax, University Physics Volume 1, Section 9.4: Types of Collisions.

Tags
Inelastic CollisionKinetic Energy LossMomentum ConservationComposite ObjectPlastic BallVehicle AccidentMud BallPerfectly Inelastic Collision

Aus Kapitel 9:

article

Now Playing

9.8 : Types of Collisions - II

Linear Momentum, Impulse and Collisions

6.4K Ansichten

article

9.1 : Linearer Impuls

Linear Momentum, Impulse and Collisions

13.0K Ansichten

article

9.2 : Kraft und Schwung

Linear Momentum, Impulse and Collisions

11.9K Ansichten

article

9.3 : Impuls

Linear Momentum, Impulse and Collisions

14.9K Ansichten

article

9.4 : Impuls-Impuls-Satz

Linear Momentum, Impulse and Collisions

10.5K Ansichten

article

9.5 : Impulserhaltung: Einleitung

Linear Momentum, Impulse and Collisions

13.9K Ansichten

article

9.6 : Impulserhaltung: Problemlösung

Linear Momentum, Impulse and Collisions

9.3K Ansichten

article

9.7 : Arten von Kollisionen - I

Linear Momentum, Impulse and Collisions

6.1K Ansichten

article

9.9 : Elastische Kollisionen: Einführung

Linear Momentum, Impulse and Collisions

8.9K Ansichten

article

9.10 : Elastische Kollisionen: Fallstudie

Linear Momentum, Impulse and Collisions

9.9K Ansichten

article

9.11 : Kollisionen in mehreren Dimensionen: Einführung

Linear Momentum, Impulse and Collisions

4.2K Ansichten

article

9.12 : Kollisionen in mehreren Dimensionen: Problemlösung

Linear Momentum, Impulse and Collisions

3.3K Ansichten

article

9.13 : Schwerpunkt: Einführung

Linear Momentum, Impulse and Collisions

10.5K Ansichten

article

9.14 : Bedeutung des Massenschwerpunkts

Linear Momentum, Impulse and Collisions

5.9K Ansichten

article

9.15 : Potentielle Gravitationsenergie für ausgedehnte Objekte

Linear Momentum, Impulse and Collisions

1.3K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten