JoVE Logo

Anmelden

The driving force for the motion of any vehicle is friction, but in the case of rocket propulsion in space, the friction force is not present. The motion of a rocket changes its velocity (and hence its momentum) by ejecting burned fuel gases, thus causing it to accelerate in the direction opposite to the velocity of the ejected fuel. In this situation, the mass and velocity of the rocket constantly change along with the total mass of ejected gases. Due to conservation of momentum, the rocket's momentum changes by the same amount (with the opposite sign) as the ejected gases. However, as time goes by, the rocket's mass (which includes the mass of the remaining fuel) continuously decreases, and its velocity increases. Therefore, the principle of conservation of momentum is instrumental in explaining the dynamics of a rocket's motion.

Using the conservation of momentum principle, the velocity of the rocket at any given instant can be calculated using the ideal rocket equation. Similarly, the thrust acting on the rocket and its instantaneous acceleration can be estimated.

This text is adapted from Openstax, University Physics Volume 1, Section 9.7: Rocket Propulsion.

Tags

Rocket PropulsionEmpty SpaceFrictionMomentumVelocityAccelerationConservation Of MomentumIdeal Rocket EquationThrustFuel Ejection

Aus Kapitel 9:

article

Now Playing

9.16 : Rocket Propulsion in Empty Space - I

Linear Momentum, Impulse and Collisions

3.1K Ansichten

article

9.1 : Linearer Impuls

Linear Momentum, Impulse and Collisions

13.5K Ansichten

article

9.2 : Kraft und Schwung

Linear Momentum, Impulse and Collisions

14.5K Ansichten

article

9.3 : Impuls

Linear Momentum, Impulse and Collisions

17.5K Ansichten

article

9.4 : Impuls-Impuls-Satz

Linear Momentum, Impulse and Collisions

10.9K Ansichten

article

9.5 : Impulserhaltung: Einleitung

Linear Momentum, Impulse and Collisions

14.3K Ansichten

article

9.6 : Impulserhaltung: Problemlösung

Linear Momentum, Impulse and Collisions

9.6K Ansichten

article

9.7 : Arten von Kollisionen - I

Linear Momentum, Impulse and Collisions

6.5K Ansichten

article

9.8 : Arten von Kollisionen - II

Linear Momentum, Impulse and Collisions

6.7K Ansichten

article

9.9 : Elastische Kollisionen: Einführung

Linear Momentum, Impulse and Collisions

11.4K Ansichten

article

9.10 : Elastische Kollisionen: Fallstudie

Linear Momentum, Impulse and Collisions

12.3K Ansichten

article

9.11 : Kollisionen in mehreren Dimensionen: Einführung

Linear Momentum, Impulse and Collisions

4.4K Ansichten

article

9.12 : Kollisionen in mehreren Dimensionen: Problemlösung

Linear Momentum, Impulse and Collisions

3.5K Ansichten

article

9.13 : Schwerpunkt: Einführung

Linear Momentum, Impulse and Collisions

13.1K Ansichten

article

9.14 : Bedeutung des Massenschwerpunkts

Linear Momentum, Impulse and Collisions

6.1K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten