Anmelden

If angular acceleration is constant, then we can simplify equations of rotational kinematics, similar to the equations of linear kinematics. This simplified set of equations can be used to describe many applications in physics and engineering where the angular acceleration of a system is constant.

Using our intuition, we can begin to see how rotational quantities such as angular displacement, angular velocity, angular acceleration, and time are related to one another. For example, if a flywheel has an angular acceleration in the same direction as its angular velocity vector, its angular velocity increases with time, as does its angular displacement. On the contrary, if the angular acceleration is opposite in direction to the angular velocity vector, its angular velocity decreases with time. These physical situations, along with many others, can be described with a consistent set of rotational kinematic equations under constant angular acceleration. The method to investigate rotational motion in this way is called kinematics of rotational motion.

To begin, note that if a system is rotating under constant acceleration, then the average angular velocity follows a simple relation, because the angular velocity is increasing linearly with time. The average angular velocity is simply half the sum of the initial and final values. From this, an equation relating the angular position, average angular velocity, and time can be obtained.

This text is adapted from Openstax, University Physics Volume 1, Section 10.2: Rotational with Constant Angular Acceleration.

Tags
Angular DisplacementAngular VelocityAngular AccelerationConstant Angular AccelerationRotational KinematicsAverage Angular VelocityLinear RelationshipRotational Motion

Aus Kapitel 10:

article

Now Playing

10.3 : Rotation with Constant Angular Acceleration - I

Rotation and Rigid Bodies

6.4K Ansichten

article

10.1 : Winkelgeschwindigkeit und Verschiebung

Rotation and Rigid Bodies

11.6K Ansichten

article

10.2 : Winkelgeschwindigkeit und Beschleunigung

Rotation and Rigid Bodies

8.4K Ansichten

article

10.4 : Rotation mit konstanter Winkelbeschleunigung - II

Rotation and Rigid Bodies

5.7K Ansichten

article

10.5 : Relation von winkelförmigen und linearen Größen - I

Rotation and Rigid Bodies

6.2K Ansichten

article

10.6 : Beziehung zwischen winkelförmigen und linearen Größen - II

Rotation and Rigid Bodies

5.1K Ansichten

article

10.7 : Trägheitsmoment

Rotation and Rigid Bodies

8.8K Ansichten

article

10.8 : Trägheitsmoment und kinetische Rotationsenergie

Rotation and Rigid Bodies

6.9K Ansichten

article

10.9 : Trägheitsmoment: Berechnungen

Rotation and Rigid Bodies

6.4K Ansichten

article

10.10 : Trägheitsmoment von zusammengesetzten Objekten

Rotation and Rigid Bodies

5.8K Ansichten

article

10.11 : Satz der Parallelachse

Rotation and Rigid Bodies

6.2K Ansichten

article

10.12 : Satz der Senkrechten Achse

Rotation and Rigid Bodies

2.4K Ansichten

article

10.13 : Vektortransformation in rotierenden Koordinatensystemen

Rotation and Rigid Bodies

1.2K Ansichten

article

10.14 : Coriolis-Kraft

Rotation and Rigid Bodies

2.7K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten