Anmelden

Since gravitational force is a conservative force, the amount of work done to move an object between two points in the gravitational field in which it resides is independent of the path taken. Thus, similar to the gravitational field, a gravitational potential energy function can be defined, which depends only on spatial coordinates.

Consider a mass gravitationally bound to another object. For example, the Earth is gravitationally bound to the Sun’s gravitational field. The potential energy of the Earth in the Sun’s gravitational field is defined such that its value is negative close to the Sun and increases to zero at large distances from the Sun.

Since the Earth and the Sun are not special cases, the result can be generalized for any two objects. Thus, under the influence of gravity, all masses fall from a higher to lower potential energy while their kinetic energies increase. Hence, the definition is consistent with the conservation of energy principle. If the total energy of a system is positive, it is not gravitationally bound.

The magnitude of the potential energy decreases with the distance between the two objects. It is inversely proportional to the distance because of the inverse-square dependence of the gravitational force on the distance.

This text is adapted from Openstax, University Physics Volume 1, Section 13.3: Gravitational Potential Energy and Total Energy.

Tags
Gravitational ForceConservative ForceWork DonePotential EnergyGravitational FieldSpatial CoordinatesMass BindingEarthSunKinetic EnergyConservation Of EnergyGravitational BindingInverse square LawDistanceTotal Energy

Aus Kapitel 14:

article

Now Playing

14.10 : Potential Energy due to Gravitation

Gravitation

2.7K Ansichten

article

14.1 : Gravitation

Gravitation

6.0K Ansichten

article

14.2 : Newtons Gesetz der Gravitation

Gravitation

9.4K Ansichten

article

14.3 : Gravitation zwischen kugelsymmetrischen Massen

Gravitation

787 Ansichten

article

14.4 : Schwerkraft zwischen kugelförmigen Körpern

Gravitation

8.0K Ansichten

article

14.5 : Reduzierte Massenkoordinaten: Isoliertes Zweikörperproblem

Gravitation

1.1K Ansichten

article

14.6 : Beschleunigung durch Schwerkraft auf der Erde

Gravitation

10.3K Ansichten

article

14.7 : Beschleunigung durch Schwerkraft auf anderen Planeten

Gravitation

4.0K Ansichten

article

14.8 : Das scheinbare Gewicht und die Erdrotation

Gravitation

3.5K Ansichten

article

14.9 : Variation der Beschleunigung aufgrund der Schwerkraft in der Nähe der Erdoberfläche

Gravitation

2.3K Ansichten

article

14.11 : Das Prinzip der Überlagerung und des Gravitationsfeldes

Gravitation

1.1K Ansichten

article

14.12 : Fluchtgeschwindigkeit

Gravitation

2.5K Ansichten

article

14.13 : Zirkuläre Umlaufbahnen und kritische Geschwindigkeit für Satelliten

Gravitation

2.8K Ansichten

article

14.14 : Energie eines Satelliten in einer kreisförmigen Umlaufbahn

Gravitation

2.1K Ansichten

article

14.15 : Keplers erstes Gesetz der Planetenbewegung

Gravitation

3.7K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten