Anmelden

In the early 17th century, German astronomer and mathematician Johannes Kepler postulated three laws for the motion of planets in the solar system. In 1909, he formulated his first two laws based on the observations of his forebears, Nikolaus Copernicus and Tycho Brahe. However, in 1918, he published his third law of planetary motion, which gives a precise mathematical relationship between a planet's average distance from the Sun and the amount of time it takes to revolve around the Sun. It states that

Equation1

The proportionality constant for this law was derived much later, after Newton established the universal law of gravitation. However, Kepler formatted this third law of planetary motion based on the observation of Galilean moons orbiting Jupiter.

This law established the ratios of the average distances of each planet from the Sun, to the Earth's average distance from the Sun, as shown in Table 1.

Table 1: Ratio of Planetary Distances from the Sun Compared to the Earth-Sun Distance.

Material Planetary Distance Ratio
Mercury 0.387
Venus 0.723
Earth 1.000
Mars 1.520
Jupiter 5.200
Saturn 9.570
Uranus 19.170
Neptune 30.180

The actual value for the distance of the Earth from the Sun was calculated for the first time during a transit of Venus using the parallax method. Using this value of the astronomical unit, the actual distances to all other planets were obtained. This law is very useful to estimate the distances of all the satellites around the Jovian planets, just by observing their time periods.

This text is adapted from Openstax, University Physics Volume 1, Section 13.5 Kepler’s Laws of Motion.

Tags
Kepler s Third LawPlanetary MotionJohannes KeplerSolar SystemAverage DistanceSunGravitational LawGalilean MoonsPlanetary DistancesAstronomical UnitTransit Of VenusParallax MethodTime Periods

Aus Kapitel 14:

article

Now Playing

14.17 : Kepler's Third Law of Planetary Motion

Gravitation

3.1K Ansichten

article

14.1 : Gravitation

Gravitation

6.0K Ansichten

article

14.2 : Newtons Gesetz der Gravitation

Gravitation

9.6K Ansichten

article

14.3 : Gravitation zwischen kugelsymmetrischen Massen

Gravitation

788 Ansichten

article

14.4 : Schwerkraft zwischen kugelförmigen Körpern

Gravitation

8.0K Ansichten

article

14.5 : Reduzierte Massenkoordinaten: Isoliertes Zweikörperproblem

Gravitation

1.1K Ansichten

article

14.6 : Beschleunigung durch Schwerkraft auf der Erde

Gravitation

10.3K Ansichten

article

14.7 : Beschleunigung durch Schwerkraft auf anderen Planeten

Gravitation

4.0K Ansichten

article

14.8 : Das scheinbare Gewicht und die Erdrotation

Gravitation

3.5K Ansichten

article

14.9 : Variation der Beschleunigung aufgrund der Schwerkraft in der Nähe der Erdoberfläche

Gravitation

2.3K Ansichten

article

14.10 : Potentielle Energie durch Gravitation

Gravitation

2.9K Ansichten

article

14.11 : Das Prinzip der Überlagerung und des Gravitationsfeldes

Gravitation

1.1K Ansichten

article

14.12 : Fluchtgeschwindigkeit

Gravitation

2.7K Ansichten

article

14.13 : Zirkuläre Umlaufbahnen und kritische Geschwindigkeit für Satelliten

Gravitation

2.8K Ansichten

article

14.14 : Energie eines Satelliten in einer kreisförmigen Umlaufbahn

Gravitation

2.1K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten