Anmelden

A simple pendulum consists of a small diameter ball suspended from a string, which has negligible mass but is strong enough to not stretch. In our daily life, pendulums have many uses, such as in clocks, on a swing set, and on a sinker on a fishing line.

The period of a simple pendulum depends on two factors: its length and the acceleration due to gravity. The period is completely independent of any other factors, such as mass or maximum displacement. For small displacements, a pendulum is identical to a simple harmonic oscillator, and the period of a pendulum is nearly independent of amplitude, especially if θ is less than approximately 15°. Applying Newton's second law for rotational systems, the equation of motion for a pendulum is obtained.

Figure1

As an example, consider two simple pendulums suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10 kg. Pendulum 2 has a bob with a mass of 100 kg. Describe how the motion of the pendulums will differ if the bobs are both displaced by 12°.

Since the mass of the bob has no effect on the motion of a simple pendulum, the movement of the pendulums will not differ at all. A pendulum’s motion is only affected by the period (which is related to the pendulum’s length) and by the acceleration due to gravity.

This text is adapted from Openstax, College Physics, Section 16.4: The Simple Pendulum and Openstax, University Physics Volume 1, Section 15.4: Pendulums.

Tags
Simple PendulumPeriodLengthAcceleration Due To GravityMassMaximum DisplacementSimple Harmonic OscillatorMotion Of PendulumsNewton s Second LawRotational Systems

Aus Kapitel 15:

article

Now Playing

15.8 : Simple Pendulum

Oscillations

4.4K Ansichten

article

15.1 : Einfache harmonische Bewegung

Oscillations

8.7K Ansichten

article

15.2 : Eigenschaften der einfachen harmonischen Bewegung

Oscillations

10.5K Ansichten

article

15.3 : Oszillationen um eine Gleichgewichtsposition

Oscillations

5.1K Ansichten

article

15.4 : Energie in einfacher harmonischer Bewegung

Oscillations

6.7K Ansichten

article

15.5 : Häufigkeit des Feder-Masse-Systems

Oscillations

5.1K Ansichten

article

15.6 : Einfache harmonische Bewegung und gleichmäßige Kreisbewegung

Oscillations

4.1K Ansichten

article

15.7 : Problemlösung: Energie in einfacher harmonischer Bewegung

Oscillations

1.1K Ansichten

article

15.9 : Torsionspendel

Oscillations

5.1K Ansichten

article

15.10 : Physikalisches Pendel

Oscillations

1.5K Ansichten

article

15.11 : Messung der Beschleunigung durch die Schwerkraft

Oscillations

453 Ansichten

article

15.12 : Gedämpfte Schwingungen

Oscillations

5.5K Ansichten

article

15.13 : Arten der Dämpfung

Oscillations

6.3K Ansichten

article

15.14 : Erzwungene Schwingungen

Oscillations

6.4K Ansichten

article

15.15 : Konzept der Resonanz und ihre Eigenschaften

Oscillations

4.9K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten