Anmelden

In the real world, oscillations seldom follow true simple harmonic motion. A system that continues its motion indefinitely without losing its amplitude is termed undamped. However, friction of some sort usually dampens the motion, so it fades away or needs more force to continue. For example, a guitar string stops oscillating a few seconds after being plucked. Similarly, one must continually push a swing to keep a child swinging on a playground.

Although friction and other non-conservative forces can be made negligibly small, complete undamped motion is rare. In fact, these non-conservative forces are often required to dampen oscillations, such as in-car shock absorbers. For a system that has a small amount of damping, the period and frequency are nearly the same as for simple harmonic motion, but the amplitude gradually decreases. This occurs because the non-conservative damping force removes energy from the system, usually in the form of thermal energy. In general, energy removal by non-conservative forces is described as

Equation1

where Wnc is work done by a non-conservative force (here, the damping force). For a damped harmonic oscillator, Wnc is negative because it removes mechanical energy (KE + PE) from the system.

This text is adapted from Openstax, College Physics, Section 16.7: Damped Harmonic Motion and Openstax, University Physics Volume 1, Section 15.4: Damped Oscillations.

Tags
Damped OscillationsSimple Harmonic MotionUndamped MotionNon conservative ForcesFrictionDamping ForceEnergy RemovalMechanical EnergyThermal EnergyHarmonic OscillatorPeriod And FrequencyCar Shock Absorbers

Aus Kapitel 15:

article

Now Playing

15.12 : Damped Oscillations

Oscillations

5.5K Ansichten

article

15.1 : Einfache harmonische Bewegung

Oscillations

8.7K Ansichten

article

15.2 : Eigenschaften der einfachen harmonischen Bewegung

Oscillations

10.5K Ansichten

article

15.3 : Oszillationen um eine Gleichgewichtsposition

Oscillations

5.1K Ansichten

article

15.4 : Energie in einfacher harmonischer Bewegung

Oscillations

6.7K Ansichten

article

15.5 : Häufigkeit des Feder-Masse-Systems

Oscillations

5.1K Ansichten

article

15.6 : Einfache harmonische Bewegung und gleichmäßige Kreisbewegung

Oscillations

4.1K Ansichten

article

15.7 : Problemlösung: Energie in einfacher harmonischer Bewegung

Oscillations

1.1K Ansichten

article

15.8 : Einfaches Pendel

Oscillations

4.4K Ansichten

article

15.9 : Torsionspendel

Oscillations

5.1K Ansichten

article

15.10 : Physikalisches Pendel

Oscillations

1.5K Ansichten

article

15.11 : Messung der Beschleunigung durch die Schwerkraft

Oscillations

453 Ansichten

article

15.13 : Arten der Dämpfung

Oscillations

6.3K Ansichten

article

15.14 : Erzwungene Schwingungen

Oscillations

6.4K Ansichten

article

15.15 : Konzept der Resonanz und ihre Eigenschaften

Oscillations

4.9K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten