JoVE Logo

Anmelden

20.14 : Radikalische Autoxidation

The oxidation of an organic compound in the presence of air or oxygen is called autoxidation. For example, cumene reacts with oxygen to form hydroperoxide. Autoxidation involves initiation, propagation, and termination steps. Many organic compounds are susceptible to autoxidation—especially ethers in the presence of oxygen, which form hydroperoxides. Even though this reaction is slow, old ether bottles contain small amounts of peroxide, which leads to laboratory explosions during ether distillation, making them dangerous to use. Naturally occurring fats and oil, like vegetable oil, can also undergo autoxidation. These oils are generally a mixture of triglycerides, which consist of three long hydrocarbon chains with double bonds.

Figure1

Typically, the allylic position of triglycerides gets oxidized to form hydroperoxides that are responsible for the foul smell of foods containing unsaturated oils. Consequently, foods with unsaturated oils have a short lifetime unless radical inhibitors are used to inhibit the radical formation. These radical inhibitors, such as BHT and BHA, are used as food preservatives. Both BHT and BHA react with radicals to form resonance stabilized radicals. Additionally, the tert-butyl groups of these compounds sterically hinder the radical center and decrease the reactivity of the radicals. Thus, these radical inhibitors are called antioxidants, as they scavenge and destroy radicals.

Figure2

One can also find several natural antioxidants that help prevent the oxidation of cell membranes and biologically important compounds. For example, vitamin E and vitamin C are natural antioxidants. These compounds react with the reactive radicals to form less reactive and stabilized radicals.

Figure3

Tags

AutoxidationOrganic CompoundsHydroperoxideEthersRadical FormationTriglyceridesUnsaturated OilsRadical InhibitorsBHTBHAAntioxidantsVitamin EVitamin CFood PreservativesPeroxide Formation

Aus Kapitel 20:

article

Now Playing

20.14 : Radikalische Autoxidation

Radikalchemie

2.1K Ansichten

article

20.1 : Radikale: Elektronenstruktur und geometrie

Radikalchemie

4.0K Ansichten

article

20.2 : Paramagnetische Elektronenresonanz (EPR) Spektroskopie: Organische Radikale

Radikalchemie

2.4K Ansichten

article

20.3 : Bildung von Radikalen: Überblick

Radikalchemie

2.0K Ansichten

article

20.4 : Bildung von Radikalen: Homolyse

Radikalchemie

3.5K Ansichten

article

20.5 : Bildung von Radikalen: Abstraktion

Radikalchemie

3.5K Ansichten

article

20.6 : Bildung von Radikalen: Addition

Radikalchemie

1.7K Ansichten

article

20.7 : Bildung von Radikalen: Eliminierung

Radikalchemie

1.7K Ansichten

article

20.8 : Radikal-Reaktivität: Überblick

Radikalchemie

2.0K Ansichten

article

20.9 : Radikal-Reaktivität: Sterische Effekte

Radikalchemie

1.9K Ansichten

article

20.10 : Radikal-Reaktivität: Konzentrationseffekte

Radikalchemie

1.5K Ansichten

article

20.11 : Radikal-Reaktivität: Elektrophile Radikale

Radikalchemie

1.8K Ansichten

article

20.12 : Radikal-Reaktivität: Nukleophile Radikale

Radikalchemie

2.0K Ansichten

article

20.13 : Radikal-Reaktivität: Intramolekular vs Intermolekular

Radikalchemie

1.7K Ansichten

article

20.15 : Radikalische Oxidation von Allyl und Benzylalkoholen

Radikalchemie

1.9K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten