Anmelden

A proteome is the entire set of proteins that a cell type produces. We can study proteomes using the knowledge of genomes because genes code for mRNAs, and the mRNAs encode proteins. Although mRNA analysis is a step in the right direction, not all mRNAs are translated into proteins.

Proteomics is the study of proteomes' function. It involves the large-scale systematic study of the proteome to denote the protein complement expressed by a genome. Scientist Mark Wilkins coined the term proteomics describing it as the ‘PROTein complement expressed by a genOME.’

As proteomics often complements genomics, it is useful when scientists want to test their research hypotheses. Even though all the cells in a multicellular organism have the same set of genes, the set of proteins produced in different tissues is different because it is dependent on gene expression. Thus, the genome is constant, but the proteome varies and is dynamic within an organism. In addition, RNAs can be alternately spliced (cut and pasted to create novel combinations and novel proteins). Also, many proteins modify themselves after translation by processes such as proteolytic cleavage, phosphorylation, glycosylation, and ubiquitination. There are also protein-protein interactions, which complicate studying proteomes. Although the genome provides a blueprint, the final architecture depends on several factors that can change the progression of events that generate the proteome. Because of this, there are different types of proteomics, such as expression, structural and functional, which help study various aspects of the proteins.

The ultimate goal of proteomics is to identify or compare the proteins expressed from a given genome under specific conditions, study the interactions between the proteins, and use the information to predict cell behavior or develop drug targets. Just as analyzing the genome requires basic DNA sequencing technique, proteomics requires techniques for protein analysis. The basic technique for protein analysis is mass spectrometry that identifies and determines a molecule's characteristics. Advances in spectrometry have allowed researchers to analyze very small protein samples. X-ray crystallography, for example, enables scientists to determine a protein crystal's three-dimensional structure at atomic resolution. Nuclear magnetic resonance uses atoms' magnetic properties to determine the protein's three-dimensional structure in an aqueous solution. Scientists have also used protein microarrays to study protein interactions. Large-scale adaptations of the basic two-hybrid screen have provided the basis for protein microarrays. Scientists use computer software to analyze the vast amount of data for proteomic analysis.

Tags

ProteomicsProteomeProtein AnalysisMass SpectrometryGene ExpressionMRNAProtein InteractionsMark WilkinsGenomicsProtein ModificationProtein StructureX ray CrystallographyNuclear Magnetic ResonanceProteolytic CleavagePhosphorylationGlycosylationUbiquitination

Aus Kapitel 32:

article

Now Playing

32.20 : Proteomik

Analysieren von Zellen und Proteinen

6.9K Ansichten

article

32.1 : Überblick über die Zellseparation und -isolierung

Analysieren von Zellen und Proteinen

5.4K Ansichten

article

32.2 : Zellkultur

Analysieren von Zellen und Proteinen

16.1K Ansichten

article

32.3 : Zelllinien

Analysieren von Zellen und Proteinen

6.9K Ansichten

article

32.4 : Hybridomatechnik

Analysieren von Zellen und Proteinen

13.5K Ansichten

article

32.5 : Gewebe Homogenisierung und Zelllyse

Analysieren von Zellen und Proteinen

7.1K Ansichten

article

32.6 : Subzelluläre Fraktionierung

Analysieren von Zellen und Proteinen

6.5K Ansichten

article

32.7 : Durchflusszytometrie

Analysieren von Zellen und Proteinen

11.6K Ansichten

article

32.8 : Grundlagen der Säulenchromatographie

Analysieren von Zellen und Proteinen

6.4K Ansichten

article

32.9 : Arten der Säulenchromatographie

Analysieren von Zellen und Proteinen

10.6K Ansichten

article

32.10 : Immunpräzipitation

Analysieren von Zellen und Proteinen

5.1K Ansichten

article

32.11 : Tagging und Fusionsproteine

Analysieren von Zellen und Proteinen

6.5K Ansichten

article

32.12 : SDB-SEITE

Analysieren von Zellen und Proteinen

26.3K Ansichten

article

32.13 : Western-Blotting

Analysieren von Zellen und Proteinen

14.2K Ansichten

article

32.14 : Zweidimensionale Gelelektrophorese

Analysieren von Zellen und Proteinen

5.5K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten