Anmelden

The test of independence is a chi-square-based test used to determine whether two variables or factors are independent or dependent. This hypothesis test is used to examine the independence of the variables. One can construct two qualitative survey questions or experiments based on the variables in a contingency table. The goal is to see if the two variables are unrelated (independent) or related (dependent). The null and alternative hypotheses for this test are:

H0: The two variables (factors) are independent.

H1: The two variables (factors) are dependent

First, one identifies the observed frequencies and calculates the expected frequencies. The expected frequency of each entry is obtained by multiplying the row total and column total and dividing it by the sum of all the frequencies. Then the test statistic is calculated using observed frequency values from the contingency tables and the calculated expected frequencies. Then with the help of the chi-square table, the critical values in a one-tailed test with suitable confidence levels are calculated. If the test statistic is larger than the critical value and falls in the critical region, the null hypothesis is rejected; otherwise, it is accepted.

This text is adapted from Openstax, Introductory Statistics, Section 11.5, Comparison of the Chi-Square Tests.

Tags

Hypothesis TestTest Of IndependenceChi square TestQualitative Survey QuestionsContingency TableNull HypothesisAlternative HypothesisObserved FrequenciesExpected FrequenciesTest StatisticCritical ValuesOne tailed Test

Aus Kapitel 8:

article

Now Playing

8.12 : Hypothesis Test for Test of Independence

Distributions

3.4K Ansichten

article

8.1 : Verteilungen zur Schätzung des Parameters "Population"

Distributions

3.9K Ansichten

article

8.2 : Freiheitsgrade

Distributions

2.9K Ansichten

article

8.3 : Verteilung der Studenten t

Distributions

5.7K Ansichten

article

8.4 : Auswahl zwischen z- und t-Verteilung

Distributions

2.7K Ansichten

article

8.5 : Chi-Quadrat-Verteilung

Distributions

3.4K Ansichten

article

8.6 : Kritische Werte für das Chi-Quadrat finden

Distributions

2.8K Ansichten

article

8.7 : Schätzen der Standardabweichung der Grundgesamtheit

Distributions

2.9K Ansichten

article

8.8 : Prüfung der Güte der Anpassung

Distributions

3.2K Ansichten

article

8.9 : Erwartete Häufigkeiten bei Tests auf Güte der Anpassung

Distributions

2.5K Ansichten

article

8.10 : Kontingenztafel

Distributions

2.4K Ansichten

article

8.11 : Einführung in die Unabhängigkeitsprüfung

Distributions

2.0K Ansichten

article

8.13 : Bestimmung der zu erwartenden Häufigkeit

Distributions

2.1K Ansichten

article

8.14 : Test auf Homogenität

Distributions

1.9K Ansichten

article

8.15 : F Verteilung

Distributions

3.6K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten