A hypothesis can be a simple sentence or statement about a property or any phenomenon observed or predicted for a population. It is usually a claim about a property of the population. It can be stated for any field observations or experiments. A hypothesis statement cannot be said to be right or wrong as it is merely a statement. It needs to be tested through an elaborate data collection process and an appropriate statistical test. A hypothesis should be a general but not a vague statement. It should not be a claim about the population property with a definite number, quantity, or measurement.

A statistician will decide using statistical tests about the claims that proceed the hypothesis statements. This process is called "hypothesis testing." A hypothesis test involves collecting data from a sample and evaluating the data. Then, the statistician decides whether there is sufficient evidence, based upon analyses of the data, to reject the null hypothesis.

Hypothesis testing consists of two contradictory hypotheses or statements, a decision based on the data, and a conclusion. To perform a hypothesis test, a statistician will:

  1. Set up two contradictory hypotheses.
  2. Collect sample data (in homework problems, the data or summary statistics will be given to you).
  3. Determine the correct distribution to perform the hypothesis test.
  4. Analyze sample data by performing the calculations that ultimately will allow you to reject or decline to reject the null hypothesis.
  5. Make a decision and write a meaningful conclusion.

This text is adapted from Openstax, Introductory Statistics, Section 9 Hypothesis Testing with Open Sample

Tags
HypothesisHypothesis TestingPopulation PropertyStatistical TestNull HypothesisData CollectionStatisticianSample DataContradictory HypothesesStatistical AnalysisConclusionEvidenceOpenstax

Aus Kapitel 9:

article

Now Playing

9.1 : What is a Hypothesis?

Hypothesis Testing

8.2K Ansichten

article

9.2 : Null- und Alternativhypothesen

Hypothesis Testing

7.2K Ansichten

article

9.3 : Kritischer Bereich, kritische Werte und Signifikanzniveau

Hypothesis Testing

11.1K Ansichten

article

9.4 : p-Wert

Hypothesis Testing

6.2K Ansichten

article

9.5 : Arten von Hypothesentests

Hypothesis Testing

23.9K Ansichten

article

9.6 : Entscheidungsfindung: p-Wert-Methode

Hypothesis Testing

4.7K Ansichten

article

9.7 : Entscheidungsfindung: Traditionelle Methode

Hypothesis Testing

3.7K Ansichten

article

9.8 : Hypothese: Akzeptieren oder nicht ablehnen?

Hypothesis Testing

26.4K Ansichten

article

9.9 : Fehler in Hypothesentests

Hypothesis Testing

3.8K Ansichten

article

9.10 : Testen einer Behauptung über den Bevölkerungsanteil

Hypothesis Testing

3.1K Ansichten

article

9.11 : Testen einer Aussage über den Mittelwert: Bekannte Grundgesamtheit SD

Hypothesis Testing

2.6K Ansichten

article

9.12 : Testen einer Behauptung über den Mittelwert: Unbekannte Grundgesamtheit SD

Hypothesis Testing

3.3K Ansichten

article

9.13 : Testen einer Aussage über die Standardabweichung

Hypothesis Testing

2.4K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten