The process of hypothesis testing based on the P-value method includes calculating the P- value using the sample data and interpreting it.

First, a specific claim about the population parameter is proposed. The claim is based on the research question and is stated in a simple form. Further, an opposing statement to the claim is also stated. These statements can act as null and alternative hypotheses: a null hypothesis would be a neutral statement while the alternative hypothesis can have a direction. The alternative hypothesis can also be the original claim if it involves a specific direction about the population parameter.

Once the hypotheses are stated, they are expressed symbolically. As a convention, the null hypothesis would contain the equality symbol, while the alternative hypothesis may contain >, <, or ≠ symbols.

Before going further in the hypothesis testing, an appropriate significance level must be decided. There is a general consensus to set significance levels at 95% (i.e., 0.95) or 99% (i.e., 0.99) level. Here the α would be 0.05 or 0.01, respectively.

Next, identify an appropriate test statistic. The proportion and the mean (when population standard deviation is known) is the z statistic. For the mean, when the population standard deviation is unknown, it is a t statistic, and for the variance (or SD), it is a chi-square statistic.

After calculating the test statistic, find the P-value electronically or from the respective P-value table, and compare it with the pre-decided significance level. If the P-value is less than the pre-decided significance level, reject the null hypothesis.

The interpretation of the original claim from the hypothesis or the property of the population must be based on the P-value.

Tags
P value MethodHypothesis TestingNull HypothesisAlternative HypothesisSignificance LevelTest StatisticZ StatisticT StatisticChi square StatisticSample DataPopulation ParameterStatistical Interpretation

Aus Kapitel 9:

article

Now Playing

9.6 : Decision Making: P-value Method

Hypothesis Testing

4.7K Ansichten

article

9.1 : Was ist eine Hypothese?

Hypothesis Testing

8.1K Ansichten

article

9.2 : Null- und Alternativhypothesen

Hypothesis Testing

7.2K Ansichten

article

9.3 : Kritischer Bereich, kritische Werte und Signifikanzniveau

Hypothesis Testing

11.1K Ansichten

article

9.4 : p-Wert

Hypothesis Testing

6.2K Ansichten

article

9.5 : Arten von Hypothesentests

Hypothesis Testing

23.8K Ansichten

article

9.7 : Entscheidungsfindung: Traditionelle Methode

Hypothesis Testing

3.7K Ansichten

article

9.8 : Hypothese: Akzeptieren oder nicht ablehnen?

Hypothesis Testing

26.4K Ansichten

article

9.9 : Fehler in Hypothesentests

Hypothesis Testing

3.7K Ansichten

article

9.10 : Testen einer Behauptung über den Bevölkerungsanteil

Hypothesis Testing

3.1K Ansichten

article

9.11 : Testen einer Aussage über den Mittelwert: Bekannte Grundgesamtheit SD

Hypothesis Testing

2.6K Ansichten

article

9.12 : Testen einer Behauptung über den Mittelwert: Unbekannte Grundgesamtheit SD

Hypothesis Testing

3.3K Ansichten

article

9.13 : Testen einer Aussage über die Standardabweichung

Hypothesis Testing

2.4K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten