Anmelden

Consider the adiabatic compression of an ideal gas in the cylinder of an automobile diesel engine. The gasoline vapor is injected into the cylinder of an automobile engine when the piston is in its expanded position. The temperature, pressure, and volume of the resulting gas-air mixture are 20 °C, 1.00 x 105 N/m2, and 240 cm3 , respectively. The mixture is then compressed adiabatically to a volume of 40 cm3. Note that, in the actual operation of an automobile engine, the compression is not quasi-static, although we are making that assumption here. What are the pressure and temperature of the mixture after the compression? What is the work done during the compression?

Solution:

For an adiabatic compression process the expression for pressure is written as

Equation1

Using the molar heat capacity ratio of air as 1.4 and by substituting the known quantities in the expression (1), the pressure of the mixture after the compression is calculated.

Equation2

From the ideal gas law and using the obtained pressure value, the temperature of the mixture after the compression is also calculated.

Equation3

Equation4

Equation5

Thus, the pressure and temperature of the mixture after compression inside the cylinder of an automobile diesel engine are determined.

If the compression process is isothermal, then the value of pressure changes from the obtained value. This is because, in an adiabatic compression process, if the temperature increases, the pressure becomes greater. Hence, on injecting the fuel into the cylinder near the compression stroke, the air mixture attains a higher temperature, resulting in spontaneous ignition of the fuel without any need for spark plugs.

By knowing the initial and final pressure, the work done during the compression can be obtained using

Equation6

Substituting the known and the obtained quantities in the above expression, the work done equals -1.63 J. Here, the negative sign indicates that the work is done by the piston on the air-gas mixture.

Tags
Adiabatic ProcessIdeal GasAutomobile EngineCompressionPressureTemperatureWork DoneMolar Heat Capacity RatioGas air MixtureSpontaneous IgnitionIsothermal CompressionVolume Changes

Aus Kapitel 20:

article

Now Playing

20.16 : Work Done in an Adiabatic Process

The First Law of Thermodynamics

3.0K Ansichten

article

20.1 : Thermodynamische Systeme

The First Law of Thermodynamics

4.6K Ansichten

article

20.2 : Geleistete Arbeit während der Lautstärkeänderung

The First Law of Thermodynamics

3.5K Ansichten

article

20.3 : Pfad zwischen thermodynamischen Zuständen

The First Law of Thermodynamics

2.8K Ansichten

article

20.4 : Wärme und freie Ausdehnung

The First Law of Thermodynamics

1.4K Ansichten

article

20.5 : Innere Energie

The First Law of Thermodynamics

4.0K Ansichten

article

20.6 : Erster Hauptsatz der Thermodynamik

The First Law of Thermodynamics

3.7K Ansichten

article

20.7 : Erster Hauptsatz der Thermodynamik: Problemlösung

The First Law of Thermodynamics

2.2K Ansichten

article

20.8 : Zyklische Prozesse und isolierte Systeme

The First Law of Thermodynamics

2.6K Ansichten

article

20.9 : Isotherme Prozesse

The First Law of Thermodynamics

3.3K Ansichten

article

20.10 : Isochore und isobare Prozesse

The First Law of Thermodynamics

3.0K Ansichten

article

20.11 : Wärmekapazitäten eines idealen Gases I

The First Law of Thermodynamics

2.4K Ansichten

article

20.12 : Wärmekapazitäten eines idealen Gases II

The First Law of Thermodynamics

2.3K Ansichten

article

20.13 : Wärmekapazitäten eines idealen Gases III

The First Law of Thermodynamics

2.1K Ansichten

article

20.14 : Adiabatische Prozesse für ein ideales Gas

The First Law of Thermodynamics

2.9K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten