Anmelden

A spherical capacitor consists of two concentric conducting spherical shells of radii R1(inner shell) and R2(outer shell). The shells have equal and opposite charges of +Q and −Q, respectively. For an isolated conducting spherical capacitor, the radius of the outer shell can be considered to be infinite.

Conventionally, considering the symmetry, the electric field between the concentric shells of a spherical capacitor is directed radially outward. The magnitude of the field, calculated by applying Gauss’s law over a spherical Gaussian surface of radius r concentric with the shells, is given by,

Equation1

Substitution of the electric field into the electric field-capacitance relation gives the electric potential as,

Equation2

However, since the radius of the second sphere is infinite, the potential is given by,

Equation3

Since, the ratio of charge to potential difference is the capacitance, the capacitance of an isolated conducting spherical capacitor is given by,

Equation4

A cylindrical capacitor consists of two concentric conducting cylinders of length l and radii R1(inner cylinder) and R2(outer cylinder). The cylinders are given equal and opposite charges of +Q and -Q, respectively. Consider the calculation of the capacitance of a cylindrical capacitor of length 5 cm and radii 2 mm and 4 mm.

The known quantities are the capacitor’s length and inner and outer radii. The unknown quantity capacitance can be calculated using the known values.

The capacitance of a cylindrical capacitor is given by,

Equation5

When the known values are substituted into the above equation, the calculated capacitance value is 4.02 pF.

Tags
Spherical CapacitorCylindrical CapacitorConcentric ShellsElectric FieldGauss s LawElectric PotentialCapacitanceChargePotential DifferenceConducting CylindersCapacitance Calculation4 02 PF

Aus Kapitel 25:

article

Now Playing

25.2 : Spherical and Cylindrical Capacitor

Capacitance

5.2K Ansichten

article

25.1 : Kondensatoren und Kapazität

Capacitance

7.1K Ansichten

article

25.3 : Kondensatoren in Reihe und parallel

Capacitance

3.7K Ansichten

article

25.4 : Äquivalente Kapazität

Capacitance

1.3K Ansichten

article

25.5 : In einem Kondensator gespeicherte Energie

Capacitance

3.4K Ansichten

article

25.6 : In einem Kondensator gespeicherte Energie: Problemlösung

Capacitance

977 Ansichten

article

25.7 : Kondensator mit einem Dielektrikum

Capacitance

3.7K Ansichten

article

25.8 : Dielektrische Polarisation in einem Kondensator

Capacitance

4.4K Ansichten

article

25.9 : Gaußsches Gesetz in Dielektrika

Capacitance

4.0K Ansichten

article

25.10 : Potenzial aufgrund eines polarisierten Objekts

Capacitance

331 Ansichten

article

25.11 : Suszeptibilität, Permittivität und Dielektrizitätskonstante

Capacitance

1.2K Ansichten

article

25.12 : Elektrostatische Randbedingungen in Dielektrika

Capacitance

956 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten