Anmelden

A fundamental property of a static magnetic field is that it is not conservative, unlike an electrostatic field. Instead, there is a relationship between the magnetic field and its source, electric current. Mathematically, this is expressed in terms of the line integral of the magnetic field, which is also known as Ampère’s law. It is valid only if the currents are steady and no magnetic materials or time-varying electric fields are present.

Ampère's law states that for any closed looped path, the line integral of the magnetic field along the path is proportional to the current enclosed in the loop. If the right-hand fingers curl along the direction of the integrating path, the current in the direction of the thumb is considered positive. The current opposite to the thumb direction is considered negative. If the integral of the magnetic field for a closed path is zero, it does not imply that the magnetic field is zero everywhere along the path; instead, the net current through the closed path is zero.

The electric field is easier to calculate for highly symmetric charge distributions using Gauss's law. Similarly, for highly symmetric current distributions, Ampère’s law can be used to evaluate the magnetic field. The line integral of the magnetic field along a closed path is known as the circulation of the magnetic field. Consider an infinitely long straight wire where the magnetic field surrounds the wire in a circular pattern. A small length element is parallel to the magnetic field along the Ampèrian loop and acts tangential to the path. Thus, the circulation of the magnetic field equals the constant magnetic field times the circumference of the circular path. Using Ampère’s law, the circulation of the magnetic field equals the permeability times the enclosed current.

Tags
Ampere s LawMagnetic FieldElectric CurrentLine IntegralClosed LoopCirculationMagnetic MaterialsSteady CurrentsGauss s LawSymmetric Charge DistributionsNet CurrentPermeability

Aus Kapitel 29:

article

Now Playing

29.9 : Ampere's Law

Sources of Magnetic Fields

3.5K Ansichten

article

29.1 : Magnetfeld durch bewegte Ladungen

Sources of Magnetic Fields

8.0K Ansichten

article

29.2 : Biot-Savart-Gesetz

Sources of Magnetic Fields

5.5K Ansichten

article

29.3 : Biot-Savart-Gesetz: Problemlösung

Sources of Magnetic Fields

2.2K Ansichten

article

29.4 : Magnetfeld aufgrund eines dünnen geraden Drahtes

Sources of Magnetic Fields

4.5K Ansichten

article

29.5 : Magnetfeld durch zwei gerade Drähte

Sources of Magnetic Fields

2.2K Ansichten

article

29.6 : Magnetische Kraft zwischen zwei parallelen Strömen

Sources of Magnetic Fields

3.3K Ansichten

article

29.7 : Magnetfeld einer Stromschleife

Sources of Magnetic Fields

4.1K Ansichten

article

29.8 : Divergenz und Krümmung des Magnetfeldes

Sources of Magnetic Fields

2.6K Ansichten

article

29.10 : Amperes Gesetz: Problemlösung

Sources of Magnetic Fields

3.4K Ansichten

article

29.11 : Magnetspulen

Sources of Magnetic Fields

2.4K Ansichten

article

29.12 : Magnetfeld eines Magneten

Sources of Magnetic Fields

3.5K Ansichten

article

29.13 : Ringkerne

Sources of Magnetic Fields

2.7K Ansichten

article

29.14 : Magnetisches Vektorpotential

Sources of Magnetic Fields

442 Ansichten

article

29.15 : Potential durch ein magnetisiertes Objekt

Sources of Magnetic Fields

225 Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten