Anmelden

Acid-base homeostasis is essential for maintaining normal physiological activities in humans. The pH of various body fluids is strictly regulated because it is critical for the optimal activity of enzymes involved in metabolic reactions. Enzymes are basically proteins, so, any significant change in pH can affect their structure and activity. In humans, pH is regulated using three primary mechanisms— chemical buffer systems, respiratory regulation, and renal regulation.

Respiratory Regulation of pH

CO2 reacts with water in the blood plasma and body fluids to form carbonic acid— a weak acid that further dissociates into H+ and HCO3 ions. Usually, the levels of CO2 and carbonic acids are in equilibrium. But when the CO2 surpasses the normal level, more carbonic acid is produced, making the blood pH acidic. Under such conditions, the brain's respiratory control center prompts the lungs to increase respiration rate, expelling surplus CO2. This loss of CO2 lowers blood carbonic acid levels and aids in bringing pH levels back to normal.

In contrast, when the blood pH becomes more alkaline due to an increase in HCO3 ions, the respiratory center lowers the respiration rate increasing blood CO2 levels. This further increases the concentration of H+ ions, restoring the blood pH to normal level.

Renal Regulation of pH

The kidneys regulate pH through the excretion of waste products in the urine. During acidosis, meaning when the blood pH is acidic, kidneys secrete excess H+ ions into the urine. The kidneys then promote the reabsorption of HCO3 ions in the blood that binds to H+ ions producing H2CO3 and restoring normal pH. During alkalosis or when the blood pH is alkaline, kidneys release fewer H+ ions through urine and limits the reabsorption of HCO3 ions in the blood. In addition, kidneys remove more ammonia through the urine during alkalosis.

Tags
PH HomeostasisAcid base HomeostasisPhysiological ActivitiesEnzyme ActivityChemical Buffer SystemsRespiratory RegulationRenal RegulationCarbonic AcidCO2 EquilibriumAcidosisAlkalosisH IonsHCO3 IonsKidney Function

Aus Kapitel 4:

article

Now Playing

4.4 : pH Homeostasis

Biochemistry of the Cell

10.3K Ansichten

article

4.1 : Verbindungen, die für die menschliche Funktion unerlässlich sind

Biochemistry of the Cell

5.1K Ansichten

article

4.2 : Die Rolle des Wassers in der Humanbiologie

Biochemistry of the Cell

7.7K Ansichten

article

4.3 : Einführung in die Elektrolyte

Biochemistry of the Cell

8.3K Ansichten

article

4.5 : Übersicht über Funktionsgruppen

Biochemistry of the Cell

7.7K Ansichten

article

4.6 : Einführung in die Kohlenhydrate

Biochemistry of the Cell

11.6K Ansichten

article

4.7 : Kohlenhydratstoffwechsel

Biochemistry of the Cell

8.0K Ansichten

article

4.8 : Zucker als Energiespeichermoleküle

Biochemistry of the Cell

2.0K Ansichten

article

4.9 : Was sind Lipide?

Biochemistry of the Cell

19.0K Ansichten

article

4.10 : Aus Lipiden gewonnene Verbindungen im menschlichen Körper

Biochemistry of the Cell

4.2K Ansichten

article

4.11 : Fette als Energiespeichermoleküle

Biochemistry of the Cell

4.1K Ansichten

article

4.12 : Was sind Proteine?

Biochemistry of the Cell

6.6K Ansichten

article

4.13 : Organisation von Proteinen

Biochemistry of the Cell

6.0K Ansichten

article

4.14 : Kugelförmige Proteine

Biochemistry of the Cell

6.7K Ansichten

article

4.15 : Faserige Proteine

Biochemistry of the Cell

1.7K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten