Anmelden

Distributed loads are a common type of load that engineers and scientists encounter in various practical situations. Distributed loads often refer to a type of load spread over a surface or a structure and can be modeled as continuous force per unit area.

For example, consider a bookshelf filled with books stacked vertically adjacent to each other. The weight of the books is evenly distributed over the length of the shelf. As a result, the pressure at different locations on the surface of the shelf corresponds to the applied load and is measured in Newtons per square meter, or Pascals.

In terms of another application, consider a hydroelectric dam, for which the submerged surface is modeled as a rectangular plate. The force exerted on a small element of the plate of length dx can be expressed as the distributed load, given by wdx, where "w"is the force per unit area. The total load applied to the plate can be determined by integrating the force exerted on each small element. The magnitude of the resultant force exerted on the plate is proportional to the area under the load curve, and its line of action passes through the centroid of the area. This point is known as the center of pressure. The center of pressure is essential in designing structures that can withstand external forces.

Examples of distributed loads include snow loads on the roof of a building, wind loads acting on a structure, or even the weight of a car on a bridge. Understanding distributed loads is crucial for designing safe, robust structures that can withstand external forces.

Tags
Distributed LoadsEngineersScientistsContinuous ForcePressureNewtonsPascalsHydroelectric DamLoad CurveCentroidCenter Of PressureStructural DesignExternal Forces

Aus Kapitel 4:

article

Now Playing

4.18 : Distributed Loads

Force System Resultants

451 Ansichten

article

4.1 : Moment einer Kraft: Skalare Formulierung

Force System Resultants

621 Ansichten

article

4.2 : Moment einer Kraft: Problemlösung

Force System Resultants

506 Ansichten

article

4.3 : Resultierendes Moment: Skalare Formulierung

Force System Resultants

1.3K Ansichten

article

4.4 : Moment einer Kraft: Vektorformulierung

Force System Resultants

2.0K Ansichten

article

4.5 : Kartesische Form für die Vektorformulierung

Force System Resultants

532 Ansichten

article

4.6 : Resultierender Moment: Vektor-Formulierung

Force System Resultants

2.9K Ansichten

article

4.7 : Prinzip der Momente

Force System Resultants

1.5K Ansichten

article

4.8 : Prinzip der Momente: Problemlösung

Force System Resultants

740 Ansichten

article

4.9 : Moment einer Kraft um eine Achse: skalar

Force System Resultants

278 Ansichten

article

4.10 : Moment einer Kraft um eine Achse: Vektor

Force System Resultants

283 Ansichten

article

4.11 : Paar

Force System Resultants

360 Ansichten

article

4.12 : Paare: Skalare und Vektorformulierung

Force System Resultants

205 Ansichten

article

4.13 : Gleichwertige Paare

Force System Resultants

242 Ansichten

article

4.14 : Moment eines Paares: Problemlösung

Force System Resultants

789 Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten