An experiment often consists of more than a single step. In this case, measurements at each step give rise to uncertainty. Because the measurements occur in successive steps, the uncertainty in one step necessarily contributes to that in the subsequent step. As we perform statistical analysis on these types of experiments, we must learn to account for the propagation of uncertainty from one step to the next. The propagation of uncertainty depends on the type of arithmetic operation performed on the values. For addition and subtraction, propagating the uncertainty requires us to express the absolute uncertainty of the outcome, which is the square root of the sum of absolute uncertainties for all steps. For multiplication and division, propagating uncertainty requires us to find the square root of the sum of the relative uncertainties for all steps, and this square root is equal to the relative uncertainty of the outcome, also known as the ratio between the absolute uncertainty of the outcome and the magnitude of the expected outcome. For exponential functions, we propagate the uncertainty by multiplying the power with the relative uncertainty of the base value, which then equates to the relative uncertainty of the outcome for the whole data set. Knowing how to propagate uncertainty correctly helps us identify the method that yields the least uncertainty, therefore optimizing our experimental protocols.

Tags
Propagation Of UncertaintyRandom ErrorStatistical AnalysisAbsolute UncertaintyRelative UncertaintyArithmetic OperationsAdditionSubtractionMultiplicationDivisionExponential FunctionsExperimental ProtocolsUncertainty Optimization

Aus Kapitel 1:

article

Now Playing

1.10 : Propagation of Uncertainty from Random Error

Chemical Applications of Statistical Analyses

325 Ansichten

article

1.1 : SI-Einheiten: Neudefinition 2019

Chemical Applications of Statistical Analyses

856 Ansichten

article

1.2 : Freiheitsgrade

Chemical Applications of Statistical Analyses

2.7K Ansichten

article

1.3 : Statistische Analyse: Überblick

Chemical Applications of Statistical Analyses

3.6K Ansichten

article

1.4 : Arten von Fehlern: Erkennung und Minimierung

Chemical Applications of Statistical Analyses

953 Ansichten

article

1.5 : Systematischer Fehler: Methoden- und Stichprobenfehler

Chemical Applications of Statistical Analyses

977 Ansichten

article

1.6 : Zufälliger Fehler

Chemical Applications of Statistical Analyses

516 Ansichten

article

1.7 : Standardabweichung der berechneten Ergebnisse

Chemical Applications of Statistical Analyses

3.3K Ansichten

article

1.8 : Einführung in die z-Scores

Chemical Applications of Statistical Analyses

218 Ansichten

article

1.9 : Unsicherheit: Überblick

Chemical Applications of Statistical Analyses

225 Ansichten

article

1.11 : Ausbreitung von Unsicherheit durch systematischen Fehler

Chemical Applications of Statistical Analyses

197 Ansichten

article

1.12 : Unsicherheit: Konfidenzintervalle

Chemical Applications of Statistical Analyses

2.6K Ansichten

article

1.13 : Signifikanzprüfung: Überblick

Chemical Applications of Statistical Analyses

3.1K Ansichten

article

1.14 : Statistisch signifikante Unterschiede erkennen: Der F-Test

Chemical Applications of Statistical Analyses

921 Ansichten

article

1.15 : Vergleich experimenteller Ergebnisse: Student's t-Test

Chemical Applications of Statistical Analyses

1.1K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten