The t-test is a statistical method used to compare the sample mean with a population mean or compare two means from two data sets. The test statistic is calculated from the standard deviation, mean, and number of measurements in the data set at a selected confidence interval and then compared to a table of critical values at this confidence level. If the test statistic is smaller than the critical value, the null hypothesis is accepted. In this case, we state that the difference between the means is not statistically significant and therefore comes from indeterminate (random) errors. If the test statistic is higher than the critical value, the null hypothesis is rejected. In this case, we state that the difference between the means is statistically significant and cannot be explained by random errors. The difference comes from errors in the method, sampling, the analysts themselves, or true phenomenological differences. In statistics, t-tests can be performed on unpaired as well as paired data. Unpaired data are two sets of replicate measurements from the same source; paired data refer to data taken on the same samples or subjects from two different methods or at two different time points for comparison. When only one side of a normal distribution curve is used in the t-test, it is a one-tailed test. If both sides of the distribution are used in the t-test, the test is two-tailed.

Tags
T testStatistical MethodSample MeanPopulation MeanTest StatisticStandard DeviationConfidence IntervalNull HypothesisCritical ValueStatistical SignificanceUnpaired DataPaired DataOne tailed TestTwo tailed Test

Aus Kapitel 1:

article

Now Playing

1.15 : Comparing Experimental Results: Student's t-Test

Chemical Applications of Statistical Analyses

1.1K Ansichten

article

1.1 : SI-Einheiten: Neudefinition 2019

Chemical Applications of Statistical Analyses

856 Ansichten

article

1.2 : Freiheitsgrade

Chemical Applications of Statistical Analyses

2.7K Ansichten

article

1.3 : Statistische Analyse: Überblick

Chemical Applications of Statistical Analyses

3.6K Ansichten

article

1.4 : Arten von Fehlern: Erkennung und Minimierung

Chemical Applications of Statistical Analyses

953 Ansichten

article

1.5 : Systematischer Fehler: Methoden- und Stichprobenfehler

Chemical Applications of Statistical Analyses

977 Ansichten

article

1.6 : Zufälliger Fehler

Chemical Applications of Statistical Analyses

516 Ansichten

article

1.7 : Standardabweichung der berechneten Ergebnisse

Chemical Applications of Statistical Analyses

3.3K Ansichten

article

1.8 : Einführung in die z-Scores

Chemical Applications of Statistical Analyses

218 Ansichten

article

1.9 : Unsicherheit: Überblick

Chemical Applications of Statistical Analyses

225 Ansichten

article

1.10 : Ausbreitung der Unsicherheit durch Zufallsfehler

Chemical Applications of Statistical Analyses

325 Ansichten

article

1.11 : Ausbreitung von Unsicherheit durch systematischen Fehler

Chemical Applications of Statistical Analyses

197 Ansichten

article

1.12 : Unsicherheit: Konfidenzintervalle

Chemical Applications of Statistical Analyses

2.6K Ansichten

article

1.13 : Signifikanzprüfung: Überblick

Chemical Applications of Statistical Analyses

3.1K Ansichten

article

1.14 : Statistisch signifikante Unterschiede erkennen: Der F-Test

Chemical Applications of Statistical Analyses

921 Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten