Precipitation titration involves the reaction of a titrant and an analyte to generate an insoluble precipitate. While precipitation titration uses various precipitating agents, silver nitrate is the most common precipitating reagent; titrations involving Ag+ are called argentometric titrations. Usually, the endpoint in a precipitation titration can be detected by visual indicators.

A precipitation titration curve demonstrates the change in concentration of the titrant or analyte upon adding the titrant. Titration curves are plotted with the volume of the analyte on the x-axis and the p function of the analyte or titrant concentration on the y-axis. A titration curve has three significant regions: before, at, and after the equivalence point. Before the equivalence point, the analyte concentration is in excess. The concentration of the unreacted analyte is calculated from a ratio of the moles of excess analyte in the solution to the total volume of the solution.

At the equivalence point, a stoichiometric amount of titrant has reacted with the analyte to form the precipitate (e.g., AgCl). However, some redissolution of the precipitate gives equal concentrations of Ag+ (titrant) and Cl(analyte). The analyte concentration can be estimated from the square root of the solubility product.

Beyond the equivalence point, the solution contains excess Ag+. Here, the analyte concentration can be estimated using the solubility expression, where the concentration of Ag+ is obtained from the ratio of moles of excess titrant to the total volume.

Tags
Precipitation TitrationTitrantAnalyteInsoluble PrecipitateSilver NitrateArgentometric TitrationsEndpoint DetectionTitration CurveEquivalence PointStoichiometric AmountAgClSolubility ProductExcess AnalyteRedissolutionSolubility Expression

Aus Kapitel 5:

article

Now Playing

5.12 : Precipitation Titration: Overview

Complexometric Titration, Precipitation Titration, and Gravimetry

3.5K Ansichten

article

5.1 : Komplexometrische Titration: Überblick

Complexometric Titration, Precipitation Titration, and Gravimetry

3.9K Ansichten

article

5.2 : Komplexometrische Titration: Liganden

Complexometric Titration, Precipitation Titration, and Gravimetry

725 Ansichten

article

5.3 : Eigenschaften von metallorganischen Verbindungen

Complexometric Titration, Precipitation Titration, and Gravimetry

697 Ansichten

article

5.4 : EDTA: Chemie und Eigenschaften

Complexometric Titration, Precipitation Titration, and Gravimetry

1.4K Ansichten

article

5.5 : EDTA: Bedingte Bildungskonstante

Complexometric Titration, Precipitation Titration, and Gravimetry

517 Ansichten

article

5.6 : EDTA: Ergänzende Komplexierungsreagenzien

Complexometric Titration, Precipitation Titration, and Gravimetry

432 Ansichten

article

5.7 : EDTA: Direkt-, Rück- und Verschiebungstitration

Complexometric Titration, Precipitation Titration, and Gravimetry

1.6K Ansichten

article

5.8 : EDTA: Indirekte und alkalimetrische Titration

Complexometric Titration, Precipitation Titration, and Gravimetry

530 Ansichten

article

5.9 : Komplexometrische EDTA-Titrationskurven

Complexometric Titration, Precipitation Titration, and Gravimetry

610 Ansichten

article

5.10 : Auswirkungen von EDTA auf Endpunkt-Detektionsmethoden

Complexometric Titration, Precipitation Titration, and Gravimetry

180 Ansichten

article

5.11 : Maskierungs- und Demaskierungsmittel

Complexometric Titration, Precipitation Titration, and Gravimetry

1.8K Ansichten

article

5.13 : Niederschlagstatrationskurve: Analyse

Complexometric Titration, Precipitation Titration, and Gravimetry

769 Ansichten

article

5.14 : Niederschlagstitration: Endpunkt-Erkennungsmethoden

Complexometric Titration, Precipitation Titration, and Gravimetry

1.1K Ansichten

article

5.15 : Gravimetrie: Übersicht

Complexometric Titration, Precipitation Titration, and Gravimetry

3.2K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten