Nuclear relaxation restores the equilibrium population imbalance and can occur via spin–lattice or spin–spin mechanisms, which are first-order exponential decay processes.

In spin–lattice or longitudinal relaxation, the excited spins exchange energy with the surrounding lattice as they return to the lower energy level. Among several mechanisms that contribute to spin–lattice relaxation, magnetic dipolar interactions are significant. Here, the excited nucleus transfers energy to a nearby magnetic dipole, usually a tumbling proton.

Spin–lattice relaxation occurs to restore the longitudinal magnetization to its equilibrium value and is characterized by the time constant, T1, which indicates the average lifetime of a nucleus in the excited state. T1 is also called the dipolar or dipole–dipole relaxation time and can range from 0.01 to 100 seconds for liquids. The value of T1 depends on the factors such as the type of nucleus, the location of a nucleus within a molecule, the size of the molecule, and temperature.

Transverse relaxation, also called spin–spin relaxation, occurs when precessing nuclei fall out of phase, resulting in magnetization decay. Transverse relaxation is influenced by static dipolar fields and is usually faster than longitudinal relaxation. The relaxation times observed in typical NMR experiments range from 0.1 to 10 seconds. Additionally, the spin-lattice relaxation time, T1, depends on the applied magnetic field, while T2 is independent of it.

While the relaxation process is essential to prevent saturation and obtain a detectable signal, it also affects the intensity of the NMR signals. Generally, the intensity of the NMR signal is affected by T1 relaxation, whereas shorter T2 results in broadened NMR signals.

Tags
Nuclear RelaxationSpin lattice RelaxationSpin spin RelaxationEquilibrium Population ImbalanceLongitudinal MagnetizationMagnetic Dipolar InteractionsT1 Time ConstantTransverse RelaxationNMR SignalsRelaxation TimeMagnetization DecayStatic Dipolar Fields

Aus Kapitel 7:

article

Now Playing

7.9 : Atomic Nuclei: Types of Nuclear Relaxation

Principles of Nuclear Magnetic Resonance

169 Ansichten

article

7.1 : Kernspinresonanz (NMR): Überblick

Principles of Nuclear Magnetic Resonance

1.5K Ansichten

article

7.2 : Atomkerne: Kernspin

Principles of Nuclear Magnetic Resonance

1.3K Ansichten

article

7.3 : Atomkerne: Kernmagnetisches Moment

Principles of Nuclear Magnetic Resonance

861 Ansichten

article

7.4 : Atomkerne: Überblick über den Kernspinzustand

Principles of Nuclear Magnetic Resonance

719 Ansichten

article

7.5 : Atomkerne: Populationsverteilung des Kernspinzustands

Principles of Nuclear Magnetic Resonance

816 Ansichten

article

7.6 : Atomkerne: Larmor-Präzessionsfrequenz

Principles of Nuclear Magnetic Resonance

831 Ansichten

article

7.7 : Atomkerne: Magnetresonanz

Principles of Nuclear Magnetic Resonance

535 Ansichten

article

7.8 : Atomkerne: Kernrelaxationsprozesse

Principles of Nuclear Magnetic Resonance

544 Ansichten

article

7.10 : NMR-Spektrometer: Übersicht

Principles of Nuclear Magnetic Resonance

852 Ansichten

article

7.11 : NMR-Spektrometer: Hochfrequenzpulse und Pulssequenzen

Principles of Nuclear Magnetic Resonance

584 Ansichten

article

7.12 : NMR-Spektrometer: Auflösung und Fehlerkorrektur

Principles of Nuclear Magnetic Resonance

514 Ansichten

article

7.13 : Diamagnetische Abschirmung von Kernen: lokaler diamagnetischer Strom

Principles of Nuclear Magnetic Resonance

715 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten