In an NMR sample, precise measurement of the absolute absorption frequencies of nuclei is difficult. A standard internal reference compound is added, and the frequency difference between the reference signal and sample signals is measured.

The internal reference compound generally used in NMR spectroscopy is tetramethylsilane (TMS). TMS is preferred because it is chemically inert, soluble in NMR solvents, and easily removable. Also, the highly shielded methyl protons in TMS yield an intense signal at a lower frequency than most other organic molecules. Because of these advantages, TMS is used as a primary reference in proton, carbon, and silicon NMR spectroscopy. If a suitably inert reference compound is not available, the reference is kept in a capillary tube within the NMR tube and called an external reference.

In addition, deuterated NMR solvents such as CDCl3, D2O, and (CD3)2SO contain residual protons whose signal can be used as a secondary reference. Furthermore, the signal from the deuterium itself can be used to monitor the instrument's magnetic field by a technique called locking. During locking, the deuterium signal is constantly compared to a reference frequency and adjusted if there is any variation.

Tags
Chemical ShiftInternal ReferencesSolvent EffectsNMR SpectroscopyTetramethylsilane TMSReference CompoundDeuterated SolventsResidual ProtonsExternal ReferenceProton NMRCarbon NMRSilicon NMRMagnetic Field Locking

Aus Kapitel 8:

article

Now Playing

8.1 : Chemical Shift: Internal References and Solvent Effects

Interpreting Nuclear Magnetic Resonance Spectra

481 Ansichten

article

8.2 : NMR-Spektroskopie: Überblick über die chemische Verschiebung

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Ansichten

article

8.3 : Proton (¹H) NMR: Chemische Verschiebung

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Ansichten

article

8.4 : Induktive Effekte auf die chemische Verschiebung: Überblick

Interpreting Nuclear Magnetic Resonance Spectra

969 Ansichten

article

8.5 : π Elektroneneffekte auf die chemische Verschiebung: Überblick

Interpreting Nuclear Magnetic Resonance Spectra

955 Ansichten

article

8.6 : π Elektroneneffekte auf die chemische Verschiebung: Aromatische und antiaromatische Verbindungen

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Ansichten

article

8.7 : ¹H Chemische Verschiebungsäquivalenz der NMR: Homotope und heterotope Protonen

Interpreting Nuclear Magnetic Resonance Spectra

2.1K Ansichten

article

8.8 : ¹H Chemische Verschiebungsäquivalenz der NMR: Enantiotope und diastereotope Protonen

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Ansichten

article

8.9 : ¹H NMR-Signalintegration: Übersicht

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Ansichten

article

8.10 : NMR-Spektroskopie: Spin-Spin-Kopplung

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Ansichten

article

8.11 : ¹H NMR-Signalvielfalt: Aufspaltung von Mustern

Interpreting Nuclear Magnetic Resonance Spectra

4.6K Ansichten

article

8.12 : Interpretation der ¹H-NMR-Signalaufteilung: Die (n + 1)-Regel

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Ansichten

article

8.13 : Spin-Spin-Kopplungskonstante: Überblick

Interpreting Nuclear Magnetic Resonance Spectra

771 Ansichten

article

8.14 : Spin-Spin-Kopplung: Ein-Bindungs-Kopplung

Interpreting Nuclear Magnetic Resonance Spectra

856 Ansichten

article

8.15 : Spin-Spin-Kopplung: Zwei-Bindungs-Kopplung (Geminal-Kopplung)

Interpreting Nuclear Magnetic Resonance Spectra

850 Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten