Anmelden

Two vectors can be multiplied using a scalar product or a vector product. The resultant of a scalar product is scalar, while with vector products, the resultant is a vector. These rules of the scalar or vector product between two vectors can be applied to multiple vectors to obtain meaningful combinations. The scalar triple product is the dot product of a vector with the cross product of two vectors.

The scalar triple product is the dot product of a vector with the cross product of two vectors. As before, the scalar triple product results in a scalar quantity. The scalar triple product of three vectors can be expressed as follows:

Equation1

On the cyclic rotation of vectors, the result of the scalar triple product remains the same, meaning, it is associative. The scalar triple product is the projection of a vector onto the resultant of the cross product of two vectors and represents the volume defined by these three vectors.

On the other hand, the vector triple product is the cross product of a vector with the cross product of two other vectors, and it results in a vector quantity. The vector triple product of three vectors can be expressed as follows:

Equation2

Here, the cyclic rotation of vectors results in a new vector. The vector triple product is not associative.

Tags
Scalar ProductVector ProductScalar Triple ProductVector Triple ProductDot ProductCross ProductAssociative PropertyCyclic RotationVector QuantityScalar QuantityProjectionVolume Representation

Aus Kapitel 2:

article

Now Playing

2.10 : Scalar and Vector Triple Products

Vectors and Scalars

2.2K Ansichten

article

2.1 : Einführung in die Skalare

Vectors and Scalars

13.7K Ansichten

article

2.2 : Einführung in Vektoren

Vectors and Scalars

13.4K Ansichten

article

2.3 : Vektorkomponenten im kartesischen Koordinatensystem

Vectors and Scalars

18.0K Ansichten

article

2.4 : Polare und zylindrische Koordinaten

Vectors and Scalars

14.1K Ansichten

article

2.5 : Sphärische Koordinaten

Vectors and Scalars

9.7K Ansichten

article

2.6 : Vektoralgebra: Grafische Methode

Vectors and Scalars

11.3K Ansichten

article

2.7 : Vektoralgebra: Methode der Komponenten

Vectors and Scalars

13.3K Ansichten

article

2.8 : Skalares Produkt (Punktprodukt)

Vectors and Scalars

8.0K Ansichten

article

2.9 : Vektorprodukt (Kreuzprodukt)

Vectors and Scalars

9.2K Ansichten

article

2.11 : Gradienten- und Entf-Operator

Vectors and Scalars

2.4K Ansichten

article

2.12 : Divergenz und Kräuselung

Vectors and Scalars

1.6K Ansichten

article

2.13 : Zweite Ableitungen und Laplace-Operator

Vectors and Scalars

1.1K Ansichten

article

2.14 : Linien-, Flächen- und Volumenintegrale

Vectors and Scalars

2.1K Ansichten

article

2.15 : Divergenz und Stokes-Theoreme

Vectors and Scalars

1.4K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten