Anmelden

Consider the wave equation for a sinusoidal wave moving in the positive x-direction. The wave equation is a function of both position and time. From the wave equation, two different graphs can be plotted.

Equation1

If a specific time is taken, say t = 0, it means a "snapshot" of the wave is taken, and the obtained graph is the shape of the wave at t=0. This graph is called the displacement versus position graph and represents the displacement of the particle from its equilibrium position as a function of the position. The wavelength can be deduced from this graph. The highest point of the wave from the equilibrium position is known as the crest, and the lowest point is known as the trough. The distance between two consecutive troughs or crests with the same height and the same slope is the wavelength of a wave. Considering the case of a transverse wave on a string, the graph represents the actual shape of the string at an instant in time.

Equation2

On the other hand, when a specific coordinate is chosen, say x = 0, graphing the wave equation results in a displacement versus time graph. This graph gives the displacement of the particle as a function of time. The period of the wave can be obtained from the graph. The time taken for the particle for one complete oscillation is the wave's period.

In the wave equation, the argument of the cosine function is called the phase of the wave. It is an angular quantity and is measured in radians. The value of phase for any values of x and t determine which part of the sinusoidal cycle is occurring at a particular point and time. For a crest, when the cosine function has a value of 1, the phase could be 0, 2π, 4π, 6π, etc. Conversely, for a trough, when the cosine function has a value of −1, the phase could be π, 3π, 5π, 7π, etc. The phase velocity is the speed at which the wave moves when keeping the phase constant. The expression for the phase velocity is given as follows:

Equation3

Tags
Wave FunctionSinusoidal WaveDisplacement Vs Position GraphWavelengthCrestTroughDisplacement Vs Time GraphPeriod Of The WavePhase Of The WavePhase VelocityAngular QuantityOscillation

Aus Kapitel 16:

article

Now Playing

16.4 : Graphing the Wave Function

Waves

1.5K Ansichten

article

16.1 : Wanderende Wellen

Waves

4.8K Ansichten

article

16.2 : Wellen-Parameter

Waves

5.7K Ansichten

article

16.3 : Gleichungen der Wellenbewegung

Waves

4.0K Ansichten

article

16.5 : Geschwindigkeit und Beschleunigung einer Welle

Waves

3.7K Ansichten

article

16.6 : Geschwindigkeit einer Transversalwelle

Waves

1.4K Ansichten

article

16.7 : Problemlösung: Stimmen einer Gitarrensaite

Waves

362 Ansichten

article

16.8 : Kinetische und potentielle Energie einer Welle

Waves

3.4K Ansichten

article

16.9 : Energie und Kraft einer Welle

Waves

3.3K Ansichten

article

16.10 : Interferenz und Überlagerung von Wellen

Waves

4.6K Ansichten

article

16.11 : Reflexion von Wellen

Waves

3.6K Ansichten

article

16.12 : Ausbreitung von Wellen

Waves

2.2K Ansichten

article

16.13 : Stehende Wellen

Waves

2.9K Ansichten

article

16.14 : Modi der stehenden Wellen - I

Waves

2.8K Ansichten

article

16.15 : Modi der stehenden Wellen: II

Waves

778 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten