Anmelden

Applying the conservation of energy principle or the work-energy theorem to an incompressible, inviscid fluid in laminar, steady, irrotational flow leads to Bernoulli's equation. It states that the sum of the fluid pressure, potential, and kinetic energy per unit volume is constant along a streamline.

All the terms in the equation have the dimension of energy per unit volume. The kinetic energy per unit volume is called the kinetic energy density, and the potential energy per unit volume is called the potential energy density.

It is important to note that the liquid's density should not change through the flow; that is, it should be incompressible. The flow should also be laminar and not turbulent. Bernoulli's equation is applicable for gases that have negligible compressibility effects. For such gases, the density is assumed to be constant and is treated as an incompressible fluid. Since gases are generally compressible, the equation does not apply to them.

Although a simple restatement of the energy conservation principle with a few critical assumptions, the equation makes it easy to calculate pressure at different points if speeds are known.

Tags

Energy ConservationBernoulli s EquationIncompressible FluidInviscid FluidLaminar FlowIrrotational FlowKinetic Energy DensityPotential Energy DensityFluid PressureCompressibility EffectsPressure Calculation

Aus Kapitel 13:

article

Now Playing

13.21 : Energy Conservation and Bernoulli's Equation

Fluid Mechanics

6.6K Ansichten

article

13.1 : Eigenschaften von Flüssigkeiten

Fluid Mechanics

3.5K Ansichten

article

13.2 : Dichte

Fluid Mechanics

13.0K Ansichten

article

13.3 : Druck von Flüssigkeiten

Fluid Mechanics

13.6K Ansichten

article

13.4 : Variation des atmosphärischen Drucks

Fluid Mechanics

1.8K Ansichten

article

13.5 : Pascalsches Gesetz

Fluid Mechanics

7.8K Ansichten

article

13.6 : Anwendung des Pascalschen Gesetzes

Fluid Mechanics

7.8K Ansichten

article

13.7 : Manometer

Fluid Mechanics

2.9K Ansichten

article

13.8 : Auftrieb

Fluid Mechanics

7.4K Ansichten

article

13.9 : Das Archimedische Prinzip

Fluid Mechanics

7.5K Ansichten

article

13.10 : Dichte und Archimedisches Prinzip

Fluid Mechanics

6.4K Ansichten

article

13.11 : Beschleunigen von Flüssigkeiten

Fluid Mechanics

962 Ansichten

article

13.12 : Oberflächenspannung und Oberflächenenergie

Fluid Mechanics

1.3K Ansichten

article

13.13 : Überdruck in einem Tropfen und einer Blase

Fluid Mechanics

1.5K Ansichten

article

13.14 : Kontaktwinkel

Fluid Mechanics

11.4K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten