Anmelden

The Buckingham Pi theorem is a valuable method in dimensional analysis, reducing complex relationships between variables into dimensionless terms. Relevant variables in analyzing the lift force on an airplane wing include lift force, air density, wing area, aircraft velocity, and air viscosity. Expressing each variable in terms of fundamental dimensions — mass, length, and time — provides a consistent foundation for constructing these dimensionless terms.

The theorem indicates that the number of Pi terms equals the total variables minus the number of fundamental dimensions. In this example, five variables and three dimensions result in two Pi terms. Air density, velocity, and wing area are selected as repeating variables, as they independently cover all dimensions. These repeating variables combine with lift force and viscosity to form dimensionless Pi terms.

Equation 1

The first Pi term expresses the efficiency of lift generation, representing how lift depends on density, velocity, and area. The second Pi term accounts for the relative impact of viscosity, revealing how viscous forces interact with the wing in relation to inertia.

Each Pi term is verified as dimensionless, allowing complex aerodynamic behavior to be represented in simplified expressions. This approach enables the prediction and optimization of lift under various conditions, capturing the essential dynamics without needing to examine each factor individually.

Aus Kapitel 20:

article

Now Playing

20.3 : Determination of Pi Terms

Dimensional Analysis, Similitude, and Modeling

23 Ansichten

article

20.1 : Dimensional Analysis

Dimensional Analysis, Similitude, and Modeling

48 Ansichten

article

20.2 : The Buckingham Pi Theorem

Dimensional Analysis, Similitude, and Modeling

77 Ansichten

article

20.4 : Dimensionless Groups in Fluid Mechanics

Dimensional Analysis, Similitude, and Modeling

33 Ansichten

article

20.5 : Correlation of Experimental Data

Dimensional Analysis, Similitude, and Modeling

17 Ansichten

article

20.6 : Modeling and Similitude

Dimensional Analysis, Similitude, and Modeling

31 Ansichten

article

20.7 : Typical Model Studies

Dimensional Analysis, Similitude, and Modeling

22 Ansichten

article

20.8 : Design Example: Creating a Hydraulic Model of a Dam Spillway

Dimensional Analysis, Similitude, and Modeling

47 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten