JoVE Logo

Anmelden

Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

Stent implants in stenosed arterial curvatures are prone to "Type IV" failures involving the complete transverse fracture of stents and linear displacement of the fractured parts. We present a protocol for detection of secondary flow (vortical) structures in a curved artery model, downstream of clinically relevant "Type IV" stent failures.

Zusammenfassung

Das arterielle Netzwerk im menschlichen Gefäßsystem besteht aus ubiquitär Blutgefäße mit komplexen Geometrien (Filialen, Krümmungen und Verwindung). Sekundäre Strömungsstrukturen sind verwirbelte Strömungsmuster, die in gekrümmten Arterien aufgrund der kombinierten Wirkung von Zentrifugalkräften, ungünstige Druckgradienten und Zufluss Merkmale auftreten. Solche Fließ Morphologien sind durch Pulsatilität und mehreren Harmonischen der physiologischen Zuströmbedingungen und variieren stark in Größe stärkeFormEigenschaften im Vergleich zu nicht-physiologischen (steady und oszillatorischen) stark beeinflusst fließt 1 bis 7.

Sekundäre Strömungsstrukturen können beeinflussen letztlich die Wandschubspannung und Belichtungszeit von Blut getragenen Partikeln in Richtung Progression der Atherosklerose, Restenose, Sensibilisierung von Blutplättchen und Thrombose 4 - 6, 8 - 13. Deshalb ist die Fähigkeit zu erkennen und zu charakterisieren , diese Strukturen im Labor. -kontrollierten Bedingungen ist precursoder klinische Untersuchungen zu fördern.

Eine gemeinsame chirurgische Behandlung von Atherosklerose ist der Stent-Implantation, verengte Arterien für einen ungehinderten Blutfluss zu öffnen. Aber die gleichzeitige Flussstörungen aufgrund Stent Installationen führen in mehrskaligen Sekundärströmung Morphologien . 4 - 6 Progressiv höhere Ordnung Komplexitäten wie Asymmetrie und der Verlust in der Kohärenz kann 5 durch folgenden Stent Ausfälle gegenüber den unter ungestörte Ströme induziert werden. Diese Stents wurden Fehler als "Typ I-to-IV" eingestuft basierend auf Versagen Erwägungen und klinischen Schweregrad 14.

Diese Studie stellt ein Protokoll für die experimentelle Untersuchung der komplexen Sekundärströmungsstrukturen aufgrund von Quer Stent Fraktur und lineare Verschiebung des gebrochenen Teile ( "Typ IV") in einer gekrümmten Arterienmodell vervollständigen. Das experimentelle Verfahren beinhaltet die Durchführung von Particle Image Velocimetry (2C-2D PIV) Techniken mit einer archetypischen Arteria carotis Einströmen Wellenform, einen Brechungsindex angepaßten Blut analogen Arbeitsfluid für phasen gemittelten Messungen . 15 - 18 Quantitative Identifizierung der Sekundärströmungsstrukturen erreicht Konzepte der Strömungsphysik verwendet, kritische Punkt Theorie und eine neuartige 26 - Wavelet - Algorithmus angewendet , um experimentelle Daten PIV 5, 6, 19 zu transformieren.

Einleitung

Sekundäre Strömungsstrukturen sind verwirbelte Strömungsmuster, die in der internen Strömungsgeometrien mit Krümmungen wie gebogene Rohre und Kanäle auftreten. Diese Wirbelstrukturen entstehen aufgrund der kombinierten Wirkung von Zentrifugalkräften, ungünstige Druckgradienten und Zufluss Eigenschaften. Im Allgemeinen scheinen die sekundäre Strömungsstrukturen in planaren Querschnitte von gebogenen Rohren als symmetrische Dean-Typ Wirbel unter stetigen Zufluss und symmetrische Dean - und Lyne artigen Wirbel unter oszillierenden Einströmverhältnisse . 1 - 3 Sekundärfluss Morphologien von Pulsatilitäts stark betroffen sind und mehrere Harmonische von pulsierender, physiologischen Einströmverhältnisse. Diese Strukturen erfassen deutlich unterschiedlichen Größenfestigkeitsformeigenschaften im Vergleich zu nicht-physiologischen (steady und oszillatorischen) fließt . 1 - 6 atherosklerotischen Läsion Entwicklung in Arterien durch das Vorhandensein von Hochfrequenzscherschwingungen in betroffenen Gebieten erlebt niedrige mittlere Scher 27, 28 . Sekundärströmungsstrukturen können den Fortschritt von Erkrankungen wie Atherosklerose beeinflussen und möglicherweise die endothelial Reaktion aufgrund pulsatile Blutfluß vermitteln durch Wandschubspannungen verändern und Belichtungszeiten von durch Blut übertragbaren Teilchen.

Eine übliche Behandlung der Atherosklerose, eine Komplikation in Verengung der Arterien durch obstruktive Läsionen, ist die Implantation von Stents. Stent Frakturen sind strukturelle Versagen der implantierten Stents , die zur weiteren medizinischen Komplikationen wie In-Stent - Restenose (ISR), Stentthrombose und Aneurysmabildung führen . 9 - 13 Stentfrakturen haben verschiedene Fehler "Typen I-to-IV" eingestuft worden, wobei "Typ IV" den höchsten klinischen Schweregrad charakterisiert und wird als die vollständige Querfraktur der Stentstreben zusammen mit linearen Verschiebungen der Stent Fragmente 14 definiert. das Protokoll in dieser Studie präsentierten beschreibt eine experimental Verfahren zur Visualisierung von sekundären Strömungsstrukturen hinter einer idealisierten "Typ IV" Stentfraktur in einem gekrümmten Arterienmodell.

Das vorgeschlagene Protokoll hat die folgenden vier wesentliche Merkmale:

Konstruktion und Herstellung von Labormaßstab Stentmodelle: Geometrische Beschreibung von Stents kann mit einer Reihe von Self-Expandable Spiralen (Federn oder Helices) miteinander verflochten mit Nitinol (eine Legierung aus Nickel und Titan) Drähte 29 verbunden sein. Die Länge des Stents und seine Strebe Durchmesser sind abhängig von der Längenskala von arteriellen während der klinischen Implantation 5 aufgetreten Läsionen. Parametric Variation der Strebe Durchmesser und der Aufstand der Wicklung (oder Pech) führt zu Stents aus verschiedenen geometrischen Konfigurationen. Eine Zusammenfassung der Stentkonstruktionsparameter für den 3D - Druck ausgewählt sind in Tabelle 1 dargestellt.

Herstellung eines Blut analogen Arbeitsfluid abgestimmtmit kinematischen Viskosität von Blut und der Brechungsindex der Teststrecke: Ein optischer Zugang zu dem gekrümmten Arterie Teststrecke ist erforderlich , um nicht-invasive Geschwindigkeitsmessungen zu machen. Dementsprechend ist ein Newtonsches Blutähnliche Flüssigkeit mit dem Brechungsindex des vaskulären Modells arbeitet und im Idealfall, eine dynamische Viskosität, menschlichem Blut passend verwendet werden , um genaue Blutströmungsmessungen 16 erhalten , -. 18, 30 das Arbeitsfluid in dieser Studie verwendet wurde berichtet von Deutsch et al. (2006), das sich aus 79% gesättigtem wässrigem Natriumiodid (NaI), 20% iges Glycerin und 1% Wasser (bezogen auf das Volumen) 16.

Versuchsanordnung zum Nachweis von kohärenter sekundären Strömungsstrukturen unter Verwendung eines zweikomponentigen, zweidimensionalen Particle Image Velocimetry (2C-2D - PIV): Die Experimente wurden entworfen , um phasen gemittelten sekundären Strömungsgeschwindigkeitsdaten in verschiedenen planaren Querschnittsstellen erwerben nachgeordnet eine Kombination aus straight und gekrümmte Stentabschnitte verkörpert eine idealisierte "Typ IV" Stentfraktur 5, 6, 9, 14. Die Protokollschritte auf den Erwerb von Sekundärströmungsgeschwindigkeit Felder mit Particle Image Velocimetry (PIV) Technik im Zusammenhang beinhaltet ein PIV - System , das besteht aus ein Laser (Lichtbogen) Quelle, Optik, die Regionen Strömungs eine spezielle Kreuzkorrelationsladungsgekoppelte Vorrichtung (CCD-Sensor oder Kamera) und Markierungspartikel innerhalb eines kurzen Zeitintervalls durch den Lichtbogen ausgeleuchtet werden (& Dgr; t zu fokussieren und zu belichten siehe Tabelle 4) 31, 32;.

Die Schritte in dem Protokoll gelten folgende Voraussetzungen: Erstens, eine kalibrierte, experimentelle Aufbau eines Zweikomponenten, zweidimensionale (2C-2D) PIV-System, das Bilder von Doppelrahmen, Einzelbelichtung Aufnahmen auswertet. Zweitens berechnet der 2C-2D-PIV System die mittlere Verschiebungen Markierungspartikel durch Ausführen einer Kreuzkorrelation zwischen zwei Bildrahmen während jeder Aufnahme erworben. Ein brief Zusammenfassung der PIV Spezifikationen und Bildaufnahme-Software ist in der Materialien und Geräte Tabelle dargestellt. Drittens benötigt alle Sicherheitsvorkehrungen um den Laser zu arbeiten, werden von geschultem Laborpersonal gefolgt nach den Richtlinien von der Gastinstitution zur Verfügung gestellt. Die Autoren schlagen vor Refs. 31 und 32 für ein ganzheitliches Verständnis der Umsetzung, Funktionalität und Anwendung von PIV-Technik in der Luft-, Wasser- und mikrofluidischen Dynamik, Korrelationsspitzenerkennung und Verschiebung Schätzung, Material und Dichte der Tracerpartikel und Messrauschen und Genauigkeit. Beachten Sie auch , dass der Laser und die Kamera kann durch die PIV Datenerfassungscomputer (3A) und die Datenverarbeitungssoftware gesteuert werden.

Die Datenerfassung und Nachbearbeitung für eine kohärente Strukturerkennung: Phase gemittelten Messungen sekundären Strömungsgeschwindigkeit ein 2C-2D - PIV wurden unter Verwendung erzeugt die Protokollbeschreibung verwendet , die folgt. Nachbearbeitung ing der Daten beteiligt kohärenten sekundären Strömungsstrukturerkennung die folgenden drei Verfahren: kontinuierliche Wavelet-Transformationen, figure-introduction-6823 5, 6, 19-24, 26.

Die Autoren weisen, dass die Geschwindigkeit Gradiententensors ist im Wesentlichen, eine 3 x 3 Matrix,
figure-introduction-7058 .

Das Protokoll stellt ein Verfahren zum Erfassen zweidimensionaler experimentellen Messungen (von 2C-2D-PIV-Technik). Daher wird die volle experimentellen Zugang zum Geschwindigkeitsgradienten tensor nicht erreichbar sein, mit dieser Methode. Der Geschwindigkeitsgradient Tensor für jedes Pixel figure-introduction-7452 des PIV Bild figure-introduction-7534 sollte eine 2 x 2-Matrix ist, figure-introduction-7633 . Die z-Komponente vorticityquation 6 "src =" / files / ftp_upload / 51288 / 51288eq6.jpg "/> für jedes Pixel figure-introduction-7812 berechnet wird, um die antisymmetrische Teil des Geschwindigkeits Gradiententensors mit figure-introduction-7969 . Das Ergebnis wird ein 2D-Array von vorticity sein figure-introduction-8090 dass in einem Konturdiagramm visualisiert werden. Die Autoren schlagen vor stark Ref. 25 für eine beredte Diskussion experimentellen Zugang zum Geschwindigkeitsgradienten Tensor das Wissen der Verwirbelung Ableitung, Dehnungsraten und kohärente Struktur Erkennung zu verbessern. Weiterhin versuchen die Autoren nicht die Zusammenhänge zwischen den genannten kohärenten Struktur Detektionsverfahren und schlägt Ref zu erkunden. 23, 24 für eine umfassende Diskussion zu diesem Thema.

Der Fokus der Schritte in dem Protokoll ist die quantitative Ermittlung der Sekundärströmung (verwirbelten) structures (auch als kohärente Strukturen bekannt). Drei Methoden der kohärenten Strukturerkennung nämlich., figure-introduction-8887 und Wavelet-transformierten vorticity figure-introduction-8996 sind auf Geschwindigkeit Felddaten zu Detektion von stromabwärts der idealisierten "Typ IV" Stentfraktur Multi-Skala, Multi-Stärke Vorkommen von sekundären Strömungsstrukturen angewendet.

Das figure-introduction-9298 Definiert einen Wirbel als räumliche Bereich , in dem die euklidische Norm des vorticity tensor dass 19 der Rate der Dehnungs dominiert, 23, 24 .Die Geschwindigkeitsgradienten Matrix in symmetrische (Dehnungsrate) zerlegt wird und antisymmetrische (Rotation) Teilen. Eigenwerte der Dehnungsrate Matrix berechnet werden; figure-introduction-9711 . Norm der Verformungsgeschwindigkeit wird dann berechnet; figure-introduction-9841. Vorticity aus dem anti- symmetrischen Teil berechnet. Enstrophie oder Quadrat von z-Komponente Verwirbelung, figure-introduction-10033 ) Wird dann berechnet. Das figure-introduction-10131 schließlich ist berechnet; figure-introduction-10229 . Ein Konturdiagramm des gesamten Satzes von figure-introduction-10345 mit iso-Regionen figure-introduction-10433 Zeigt an , 19 sekundäre Strömungsstrukturen.

Das figure-introduction-10610 , Die auch als "wirbelnde Kraft" genannt , ist eine Methode Wirbel Identifizierung von kritischen Stellenanalyse des lokalen Geschwindigkeits Gradiententensors und seine entsprechenden Eigenwerte durchgeführt von 20 bis 24 . Eigenwerte des Geschwindigkeits Gradiententensors bei jedem Pixel figure-introduction-10991 berechnet. Die Eigenwerte sollten von der Form sein, figure-introduction-11115 . Ein Konturplot figure-introduction-11203 mit iso-Regionen figure-introduction-11291 zeigt an Strukturen Nebenstrom 20-22.

Wavelet-Transformationsverfahren verwendet eine Analysefunktion (oder wavelet), die Glätte in physikalischen und spektralen Räume hat, zulässig ist (oder nur Null-Mittelwert) und hat eine finite figure-introduction-11635 5, 6, 26. Durch Falten einer dilatiert oder kontrahiert mit einer 2D vorticity Feld Wavelet - transformierten vorticity Wavelet figure-introduction-11845 Feld erzeugt comprising kohärenter Strukturen mit einer Vielzahl von Skalen und Stärken 5, 6, 26. Shannon Entropie des 2D - Wavelet-transformierten vorticity Feld wird berechnet , um die optimale Wavelet - Skala abzuschätzen bei dem alle kohärenten Strukturen angemessen gelöst werden. Diese Entropieschätzung beinhaltet eine Reihe von Wahrscheinlichkeiten figure-introduction-12284 für jedes Pixel, figure-introduction-12372 so dass figure-introduction-12451 Der normierte Quadratmodul der Verwirbelung mit dem Pixel an der Stelle m zugeordnet ist , n 5, 6. Die Verfahrensschritte sind in Figur 6 graphisch dargestellt. Die Einschränkungen bei der Wahl der Wavelet platziert werden ausführlich in Ref dargestellt. 26. Dieses Protokoll Schritt beschreibt das Verfahren für eine kohärente Struktur Erkennung eines 2D-Ricker-Wavelet verwendet wird. Die Begründung für die Verwendung dieses wavelet für vortical Musterabgleich wird in Ref dargestellt. 5, 6 und die zugehörigen darin zitierten Referenzen.

Protokoll

1. Konstruktion und Herstellung von Stent-Modelle

Hinweis: Die folgenden Schritte ausgeführt wurden im Labormaßstab Modelle von geraden und gekrümmten Stents zu schaffen. Die Installation der zwei Stent Modelle ein "Typ IV" fracture (Fragmentierung und lineare Verschiebung des gebrochenen Stentteile) verkörpern.

Hinweis: Die Autoren verwendeten Pro / Engineer Software zum Zeitpunkt der Forschung für CAD-Modelle der Stentgeometrie zu schaffen. Das folgende Verfahren ist verallgemeinert und nicht Begriffe allgemein für die CAD-Software verwendet werden, umfassen. Andere CAD-Pakete zur Verfügung, können auch verwendet werden. Die Schritte, die folgen, sind anwendbar für die CAD-Software, die die Autoren im Zeitpunkt der Forschung verwendet und wurden von der Website des Herstellers angepasst. Für eine weitere Beschreibung der Maschine Rapid Prototyping von den Autoren verwendet finden Sie in der Materialliste. Die Parameter - Gleichungen und initialisierte Werte für Stent - Design sind in Ta vorgestelltBle 1 und Figur 1D und 1E sind Beispiele für die geraden und gekrümmten Stent Modelle nach Rapid - Prototyping.

  1. Erstellen Sie gerade Stentgeometrie durch parametrischer Gleichungen definieren und Parameter der linken und rechten Helices in einem cartesianischen (XYZ) Koordinatensystem initialisiert wird (Tabelle 1).
    1. Generieren Sie einen Satz von 10 im gleichen Abstand links drehen Helices in einer ebenen kreisförmigen Anordnung um eine gerade Bezugslinie oder z-Achse unter Verwendung von Gl. 1, 2, 3 und 5 in Tabelle 1, mit der initialisierten Werte der Anzahl der Windungen gezeigt
      ( figure-protocol-1801 ), Pech, Stent-Drahtstärke ( figure-protocol-1901 ) Und Nenndurchmesser des Stents ( figure-protocol-2007 ) (1A und Tabelle 1).
    2. Wiederholen Sie Schritt 1.1.1 unter Verwendung von Gl. 1, 2, 4 und 5 zu erzeugen, einekreisförmigen Muster von 10 gleich beabstandeten linken Helices (1A).
    3. Generieren Sie Geometrie gerade Stent durch die Kombination oder die linke Montage und rechts Helices um eine gemeinsame Achse (1A) drehen.
  2. Erstellen gekrümmten Stentgeometrie durch parametrischer Gleichungen definieren und initialisieren Parameter der linken und rechten Helices in zylindrischen (R-β-X) Koordinatensystem oder über eine gekrümmte Bezugslinie (Tabelle 1). Wiederholen Sie die Schritte 1.1.1 - 1.1.2 mit den zuvor initialisiert Parameter unter Anwendung von Gl. 1, 2, 6 und 7.
    1. Erzeugen einer gekrümmten Stentgeometrie kombiniert oder mit der linken und rechten Montage Helices gekrümmt um eine gemeinsame Achse (R) und einen Winkel drehen figure-protocol-3045 am Ursprung (1B).
  3. Erstellen Sie hochauflösende Stereolithografie (STL) Dateien aus den geraden und gebogenen Stent-CAD-Modelle.
    1. Wählen 'Exportieren> Modell "von der" Menü Datei ". Wählen Sie 'STL' Option. Set 'Sehnenhöhe "auf 0 gesetzt' Winkelsteuerung 'auf 1. Tragen Sie auf" OK ", um die STL-Datei zu erstellen. Anmerkung: Der Wert von "Angle Control" regelt die Menge an Tessellation entlang der Oberfläche mit kleinen Radien und die Einstellung zwischen 0 und 1 sein kann.
  4. Fabrizieren die Stentmodelle auf einem Rapid - Prototyping - Maschine in 1C gezeigt Materialien in den Materialien und Geräte Tabelle aufgelistet werden.
    1. Starten Sie den 3D-Druck-Software (siehe Materialliste). Klicken Sie auf "Einfügen", um die STL-Datei auf dem 3D-Drucker Computer zu suchen und die gewünschte Datei auswählen. Ziehen Sie die Maus auf dem Bildschirm platzieren Sie die 3D-Rendering der STL-Datei auf einer virtuellen Plattform ( "Tray") auf dem Bildschirm.
    2. Wählen Sie den entsprechenden Einheiten als "mm" (Optionen: "mm" oder "Zoll") aus dem Menü Datei Registerkarten. Wählen Sie die Qualität des fertigen Produkts als "Matte" (Opgen: "Matte" oder "Gloss"). Wählen Sie "Tray-Einstellungen> Validierung 'Registerkarte im Dateimenü.
    3. Achten Sie auf die "Überprüfung erfolgreich" Nachricht an den nächsten Schritt fortzufahren. Wenn die Validierung nicht erfolgreich wiederholen Schritte in 1.3 - 1.4.2 bis zur erfolgreichen Validierung erreicht.
    4. Wählen Sie "Tray-Einstellungen> Build 'Registerkarte im Dateimenü die Datei auf dem 3D-Drucker für die Fertigung zu senden.
      Anmerkung: Der Wert der "Sehnenhöhe" steuert den Grad der Tessellation der Modelloberfläche. Es wirkt sich auf die Genauigkeit und die Dateigröße des Modells automatisch von einem Minimalwert ersetzt werden. Kleine Werte von Sehnenhöhe führt zu weniger Abweichung von der tatsächlichen Bauteilgeometrie mit Dateigröße Kompromisses. Validierungsprüfung ist erforderlich, um sicherzustellen, dass der Teil angrenzt und nichtig von strukturellen Anomalien während der Fertigungsphase.

2. Bereiten Sie Kinematic Viskositäts- und Refraktive InDex-abgestimmte Blut-Analog-Flüssig

Hinweis: Das folgende Verfahren etwa 600 ml Blut-Analog-Lösung ergibt. Eine Zusammenfassung der chemischen Reagenzien und Lösungsmittel mit relevanten Eigenschaften in der Herstellung der Lösung verwendet werden, in der Materialliste dargestellt. Relevanten Materialeigenschaften vorgeschlagen Laborausrüstung und die Richtlinien für die volumetrische Berechnungen sind in den Tabellen 2 dargestellt, 3 bzw. 4.

  1. Bereiten Sie eine gesättigte Lösung von Natriumiodid (NaI).
    1. Gießen Sie 500 ml VE - H 2 O in einen 2000 - ml - Becher. Das Becherglas auf den Magnetrührer.
    2. Messen Sie ≈860 g Nal auf Null gesetzt Gewicht Balance und mit 100 g-Schritten in den Becher unter Rühren und warten auf die aktuelle Zugabe vollständig aufzulösen, bevor die nächste Zugabe. Aufzeichnen der Temperatur bei jeder Zugabe, da der Prozess der Sättigungs deionisiertes H 2 O mit NaI geringfügig exothermic. Kühlen Sie die Lösung als notwendig es bei RT zu halten (≈ 25 ° C).
    3. Hinzufügen kleinen Inkrementen NaI (≈5-10 g) bis 20 g, bis die Lösung gesättigt ist. Nehmen Sie die Masse und die Temperatur jeder Zugabe. Das Becherglas mit gesättigter Nal-Lösung aus dem Magnetrührer, wenn Sie fertig.
  2. Messung der Dichte der gesättigten NaI-Lösung ( figure-protocol-6825 ).
    1. In 10 ml gesättigter Nal-Lösung aus Schritt 2.1 in ein 50 ml Becherglas auf einer genullt-Skala mit einer Spritze (oder Vollpipette), um sicherzustellen, gibt es keine Luftblasen. Nehmen Masse und das Volumen hinzugefügt.
    2. Berechnen Dichte jeder Zugabe unter Anwendung von Gl. 8 (siehe Tabelle 3). Wiederholen Sie diesen Schritt ca. 4-5 mal. Der Mittelwert der Dichten aufgezeichnet. Bringen Sie die Lösung der Charge von gesättigten NaI-Lösung, hergestellt in Schritt 2.1.
  3. Schätzen Sie das Gesamtvolumen des Blutes Nachahmen Lösung. < ol>
  4. Messen der Masse des NaI gesättigten Lösung, hergestellt in Schritt 2.1 und berechnen dessen Volumen ( figure-protocol-7608 ) Unter Verwendung von Gl. 9. Schätzung das Gesamtvolumen des Blutes Nachahmen Lösung ( figure-protocol-7767 ) Und die Teilmengen des Glycerins ( figure-protocol-7875 ) Und entsalztem Wasser ( figure-protocol-7972 ) Hinzugefügt folgende Gleichung zu werden. 10, 11 und 12 (siehe Tabelle 3).
  • Bereiten Sie Blut-Analog-Lösung.
    1. Vorbereiten eines Blut analoge Lösung, bestehend aus 79% gesättigten NaI-Lösung, 20% Glycerin und 1% entionisiertes Wasser (bezogen auf das Volumen) durch auf einem Magnetrührer homogenisiert, gemischt wird.
    2. Das Becherglas mit der gesättigten Nal-Lösung auf dem Magnetrührer und fügen Glycerin in kleinen Schritten (88 / 51288eq38.jpg "/>), unter Verwendung einer Spritze (oder degressive oder volumetrischen Pipette), bis das gesamte Volumen von Glycerol ( figure-protocol-8667 berechnet) 2,3 in Schritt zugegeben wird. Für jede figure-protocol-8789 Iteration, notieren Sie die Lautstärke hinzugefügt und warten, bis die Lösung sichtbar homogenisiert wird, bevor das die nächste Erhöhung des Glycerins hinzufügen.
    3. Nach der vollständigen Homogenisierung von gesättigten Nal-Lösung und Glycerin, hinzufügen figure-protocol-9125 mit einer Spritze (oder abgestuft oder Pipette). Weiter auf dem Magnetrührer gerührt wurde, bis das Blut-Analog-Lösung sichtbar homogenisiert.
  • Charakterisieren Sie das Blut analoge Flüssigkeit bei Standardumgebungstemperatur und Druck (25 ° C, 1 atm).
    1. Messen Sie die kinematische Viskosität (ν) ein Standard - Ubbelohde - Viskosimeter oder gleichwertigen Messinstrument.Die kinematische Viskosität kann durch Zugabe geringer, gemessen Mengen von Glycerin mit einer abgestuften oder Dosierpipette eingestellt werden.
    2. Messung des Brechungsindex (n) unter Verwendung eines Refraktometers. Brechungsindex kann durch Zugabe von geringen Mengen von Natriumthiosulfat wasserfreien mit einem Spatel eingestellt werden.
      Anmerkung: Die Autoren berichten über die kinematische Viskosität ν = 3,55 cSt (3,55 x 10 -6 m 2 s -1 ± 2,8%) und dem Brechungsindex des Blut analogen Fluid, n = 1,45 (± 3,4%) 5, 6.
  • 3. Vereinbaren Experiment zur Messung von Sekundärströmungsgeschwindigkeit Felder hinter einem "Typ IV" Stent Failure

    Hinweis: Die um 180 ° gekrümmten Arterie Meßstrecke besteht aus zwei Acrylblöcke miteinander verklebt, um 180 ° gekrümmten Kanal an jedem Block bearbeitet und Bereitstellung für Einlass- und Auslassrohre , wie in 1F gezeigt, 3A und 3B. Die Materialien für die Teststrecke ausgewählt sind gewährleistet optische Zugänglichkeit zu haben. Die Autoren berichten , den Brechungsindex des Materials im Testabschnitt als ≈1.4914 verwendet 5, 6 (siehe Tabelle 2).

    1. Installieren hergestellt Stents in Schritt 1 in der gekrümmten Arterie Testabschnitt aus Acryl auf ein idealisiertes Typ - IV - Fraktur Szenario verkörpern und beinhaltet einen kompletten Querfraktur von Stents und eine lineare Verschiebung der fragmentierten Teile (siehe 1F, 3A und 3B).
      1. Platzieren Sie den geraden Stent vor dem gekrümmten Arterie Teststrecke (siehe 1F und 3B). Um sicherzustellen , dass der Abstand zwischen den geraden und den gekrümmten Stents ist '3 mal' den Durchmesser des Rohrs (D Rohr = 12,7 mm) werden die 45 ° gekrümmten Stent innerhalb der Krümmung mit einem Ende an dem Einlass zu dem gekrümmten Rohr ( 2B).
    2. Montieren Sie the Versuchsaufbau durch die geraden Acrylrohre mit dem Einlass und dem Auslass des 180 ° gekrümmten Arterie Meßstrecke Verbindungs ​​wie in der schematischen Übersicht der Versuchsanordnung (Figur 2) auf einem optischen Tisch (3A) gezeigt.

    4. Acquire von Sekundärströmungsgeschwindigkeit Felder

    Anmerkung: Die folgende Beschreibung im Protokoll bezieht sich auf den Erwerb von sekundären Strömungsgeschwindigkeitsfelder unter Verwendung Particle Image Velocimetry (PIV) -Technik 3B (schematische Darstellung) zeigt , daß es vier Lagen (45 °, 90 °, 135 ° und 180 °). mit Winkel Kerben Laser-Blatt Vorsprung und machen planare Querschnittssekundärströmungsgeschwindigkeit zu erleichtern. Die Protokollschritte beziehen sich auf Messungen für die 90 ° Position erworben. Wenn die Laserfolie bei 45 ° Stelle angeordnet ist, wird die Kamera an der 135 ° Stelle angeordnet Fluss für sekundären optischen Zugang zu erhalten measurements an der 45 ° Position.

    Hinweis: Das folgende Verfahren verallgemeinert ist und darf keine Bedingungen allgemein für die Bildaufnahme und Postverarbeitungssoftware und der Gerätesteuerung Software verwendet (siehe Materialliste). Andere Bild- und Datenerfassung von Paketen zur Verfügung können auch im Protokoll verwendet werden.

    1. Schalten Sie den Laser mit Hilfe der ON / OFF-Schalter auf der Laserenergiequelle befindet. Illuminate ein kleines Stück Papier, um den Laser Blatt zu visualisieren. Stellen Sie die Laser-Blechdicke (etwa 2 mm) visuell, durch den Laser Blatt drehen Fokussierungsoptik auf der Laserquelle.
    2. Platzieren Sie den Laser Blatt entlang der 90 ° Messbereich so, dass das Blatt senkrecht zur optischen Tabelle ist. Stellen Sie die Kamera in der Nähe von 0 ° oder 180 ° Lage optischer Zugang zu gewinnen den Querschnitt durch die Laserblatt beleuchtet.
    3. Richten Laser und Kamera mit der Bildaufnahme und Nachbearbeitung Software anpassenDas Sichtfeld der Kamera ausreichend um das Bild des kreisförmigen Querschnitt der gekrümmten Arterie zu erfassen und die Verringerung der Partikel Verzerrung (siehe 3A). Führen Sie die Ausrichtung von "Versuch und Irrtum" durch die Software-generierte Bild des Sichtfeldes inspizieren. Schalten Sie den Laser mit Hilfe der Steuerschalter befindet sich auf der Laserenergiequelle und stellen Sie sicher, dass die Kamera mit der Objektivabdeckung entfernt eingeschaltet.
    4. Starten Sie Bildakquisition und Nachverarbeitung Software auf dem PIV Datenerfassungscomputer und melden Sie sich als "Experte des Benutzers. Erstellen Sie ein neues Projekt aus dem Dateimenü, geben Sie einen "Projektname" und wählen Sie die Option 'PIV' unter dem 'Art des Projekts ". Wählen Sie "Neu" aus dem Datei-Menü eine neue PIV Aufnahme-Session zu initialisieren. Wählen Sie "Gerät" unter "Einstellungen" Abschnitt auf der Bildaufnahme und Nachbearbeitung Software.
    5. Navigieren Sie zu "Aufnahme" Dialogfeld auf dem Bildschirm,aktivieren "Camera 1" Kontrollkästchen und wählen Sie "Single Frame (T1A) 'Option. Wählen Sie Laser "Radio-Button 'werden auf ON in der Bildakquisition und Nachverarbeitung Software-Einstellungen. Aktivieren Sie den externen Power-Modus auf der Laserenergiequelle durch "EXT" und "High-Power" Schalter auf der Laserenergiequelle befindet drücken.
    6. Wählen Sie 'Grab' auf der Bildakquisition und Nachverarbeitung Software zu starten PIV Erfassen von Bildern auf dem Computerbildschirm zu beobachten. Bewegen Sie die Kamera mit leichten manuellen Anpassungen auf der optischen Tisch und stellen Sie Fokus die Position der Kamera zu optimieren, um die Feld-of-view zu maximieren, reduzieren Unschärfen und Bildverzerrung.
    7. Wählen Sie "Stop" Radio-Button auf der Bildaufnahme und Nachbearbeitung Software-Einstellungen einzustellen PIV Datenerfassung und machen keine weiteren Kameraeinstellungen. Das Ausrichtungsverfahren ist in diesem Stadium abgeschlossen.
      Hinweis: Die Laserpulse in diesem Stadium durch das Bild gesteuert werdenErwerb und Post-Processing-Software und kann durch Pulsieren unterschiedlicher Frequenz oder "Exposure" in den Software-Einstellungen gesteuert werden. Der Laser wird automatisch beendet, da es durch die Bildaufnahme und Nachbearbeitung Software gesteuert wird. Schließen Sie nicht die Bildaufnahme und Nachbearbeitung Software wie das aktuelle Projekt verwendet werden PIV Daten in den Schritten zu erwerben, die folgen.
    8. Erwerben Bilder der sekundären Strömungsfelder verwendet 2C-2D-PIV-System durch den folgenden Schritten phasenweise PIV Daten sicherzustellen verwenden zeitlichen Triggerimpulse von der Pumpe Instrumentensteuerrechner erzeugt, der mit dem Dual-Puls-Laser und Kamera synchronisiert sind.
      Hinweis: Der programmierbare Pumpe zum Pumpengerätesteuerungscomputer verbunden ist und von der Instrumentensteuersoftwareprogramm gesteuert. Die Schritte, die folgen können Softwaresteuermodule auf PIV-Computer mit dem Bildaufnahme Einrichten und Verarbeitung Post und uns die Gerätesteuerung Computer pumpeninstrument Steuerungssoftware.
      1. Schalten Sie die programmierbare Pumpe mit dem Ein- / Aus-Schalter an der Pumpe. Starten Sie die Instrumenten-Steuerprogramm auf dem Pumpen Instrument Steuercomputer.
      2. Legen Sie die Textdatei, die die Werte der Spannungs-Zeit-Wellenform mit einem Referenz Trigger hat (t / T = 0), dass die physiologische (Arteria carotis) stellt Kurvenform fließen auf das Instrument Steuerungssoftware eine physiologische Womersley Zahl Aufrechterhaltung figure-protocol-17419 und maximale Reynolds figure-protocol-17512 und Dean figure-protocol-17592 Nummern (4A).
      3. Set 'Amplitude' bis 1 (Volt), "DC-Offset" auf 0 (Volt), 'Anzahl der Zeitschritte "bis 1000 und" Zeitraum "bis 4 (Sekunden) auf der Gerätesteuerung Software-Schnittstelle Bildschirm.
      4. Bestätigen Sie, dass die externe Power-Modus auf der Laserenergiequelle in Schritt 4.5, ist noch aktiviert. Drücken Sie 'EXT' und 'High Power' schaltet die Laserenergiequelle befindet, falls erforderlich.
      5. Wählen Sie "Gerät" nach "Neue Aufnahme" unter dem Bereich "Einstellungen" auf der Bildaufnahme und Nachbearbeitung Software klicken. Navigieren Sie zu der "Aufnahme" Dialog-Box auf der Bildakquisition und Nachverarbeitung Software (PIV Computer), aktivieren Sie "Camera 1" das Kontrollkästchen, und wählen Sie "Double Frame (T1A + T1B) 'Option, um den Laser zu gründen, um Feuer in Doppelimpuls Modus.
      6. Wählen Sie 'Zeit' Option auf der "Aufnahme" Dialog-Box auf der Bildakquisition und Nachverarbeitung Software, wählen Sie "Triggerquelle" und setzen Sie ihn auf "Externe zyklischen Trigger" mit Trigger-Signale von der Pumpe Instrument Steuermodul zu synchronisieren. Wählen Sie "Aquisit" unter dem Bereich "Einstellungen" auf der Bildakquisition und Nachverarbeitung Software sherb Einrichtung PIV-Akquisition.
      7. Navigieren Sie zu dem "Aufnahmesequenz" Dialog-Box auf der Bildakquisition und Nachverarbeitung Software. Fügen Sie einen 'Table Scan "Subkategorie unter" Aufnahmesequenz "die entsprechende Registerkarte auf der Software-Schnittstelle zur Verfügung gestellt werden. Bestücken Sie die Tabelle 'Tabelle bearbeiten Scan' erstellt, 'Append Scan' und Eingabezeitwerte mit 0 Millisekunden beginnend und endend mit 4000 Millisekunden in Intervallen von 40 Millisekunden. Eingang At-Werte zu jeder Zeit Eintrag in der Tabelle entspricht. Drücken Sie "Enter" auf der Tastatur nach jedem eingegebenen Wert.
      8. Navigieren Sie zu dem "Aufnahmesequenz" Dialog-Box auf der Bildakquisition und Nachverarbeitung Software. Add 'Image Acquisition "Subkategorie unter' Table-Scan 'erstellt in Schritt 4.8.7. Stellen Sie die "Anzahl der Bilder 'bis 200, aktivieren Sie das Kontrollkästchen" Bilder während der Aufnahme "und wählen Sie" Start sofort ".
      9. Select 'Gerät' unter dem Bereich "Einstellungen" und bestätigen, dass der Laser auf "ON" mit den entsprechenden Leistungseinstellungen festgelegt ist. Navigieren Sie zu "Laser Control 'zu bestätigen. Das PIV-System ist nun bereit, Daten zu erfassen.
      10. Wählen Sie den "RUN" Radio-Taste auf der Gerätesteuerung Software-Schnittstelle an der Pumpe Instrument Steuercomputer zu liefern Fluid dem Experiment unter Verwendung der in Schritt Eingänge 4.8.2-4.8.3 zusammen mit einem Triggerimpuls alle 4 Sekunden.
      11. Wählen Sie "Start Recording" für den Erwerb der phasenweise Messungen mit Trigger-Signal von der Pumpe Gerätesteuerung , bis die vorgegebene Anzahl von planaren Geschwindigkeitsfelder (200, ausreichend zu erreichen statistische Konvergenz 5, 6, 31, 32) zu jedem Zeitpunkt Instanz einrichten in der Tabelle Scan (siehe Schritt 4.8.7) an der 90 ° Position hergestellt wird.
      12. Drücken Sie "Stop" auf der Laserenergiequelle, sobald die Aufnahme gemacht wird. Schalten Sie die Pumpe und der Kamera, und legen Sie die Kameralinse cover. Wählen Sie "Stop" Radio-Taste auf der Gerätesteuerung Software-Schnittstelle an der Pumpe Gerätesteuerung Computer.
      13. Eine Sichtprüfung Versuchsaufbau die Höhe der Leckage Gage, sammeln die ausgelaufene Flüssigkeit, wenn nötig, um sicherzustellen, dass alle Geräte ausgeschaltet wurde, oder im Standby-Modus bleiben, je nachdem, was angemessen ist. Schließen Sie die Aufnahme-Session in der Bildakquisition und Nachverarbeitung Software.

    5. Erkennen Coherent Sekundärströmungsstrukturen

    Hinweis: Mit der Bildakquisition und Nachverarbeitung Software und eine Reihe von Befehlszeilenfunktionen (MATLAB-basierte Toolbox PIVMat 3.01) zu importieren, Post-Prozess und zu analysieren , 2 - Komponenten - Vektorfelder aus dem PIV - System 5, 6, 33.

    1. Erstellen Sie eine Maske, die die interne Strömungsgeometrie , dh die kreisförmige, ebene Querschnittsfläche umfasst.
      1. Wählen Sie das Projekt in Schritt erstellt 4.4, das jetzt an jeder hat erworben PIV DatenInstanz der Zeit in dem Schritt 4.8.7 spezifiziert. Außerdem wählen Sie alle Daten im Dialogfeld die gesamte PIV Daten Ensemble enthält.
      2. Folgen Sie den Anweisungen in der "Ergänzenden Code-Datei - die Schaffung einer Maske".
    2. Erstellen Sie eine Postverarbeitungsroutine von "Batch" Symbol aus dem Datei-Menü im Projektfenster auswählen, während einige PIV-Datensatz standardmäßig aktiviert ist. Ein Dialogfenster mit einer "Operationsliste" wird das angezeigt werden soll in der gleichen Reihenfolge aufgefüllt werden, wie im folgenden Schritt erwähnt.
      1. Folgen Sie den Anweisungen in der "Ergänzenden Code-Datei - die Schaffung einer Postverarbeitungsroutine".
    3. Compute Phasen gemittelt und RMS Sekundärströmungsgeschwindigkeit und Verwirbelung Felder aus.
      1. Wählen Sie die Operation 'Vektor-Statistik: Vektorfeld Ergebnis "von der Gruppe" Statistik "und klicken Sie auf' Parameter 'im Dialogfeld. Aktivieren Sie "Average V" und "RMS V 'Kontrollkästchen under die 'Vector Felder' Abschnitt. Wählen Sie die Operation 'rot-z EYX - Exy' aus der Gruppe 'extrahieren Skalarfelds: Rotation und Scherung' die zweidimensionale vorticity im planaren Querschnitt zu bestimmen.
    4. Starten Sie den gesamten Beitrag PIV Datenverarbeitung und phasen gemittelte Größen der Geschwindigkeit, RMS Geschwindigkeit, Verwirbelung und wirbelnde Kraft mit Operationen geschaffen in den Schritten 5.3 und 5.4 erzeugen.
      1. 'Mit Rechtsklick "auf einer beliebigen PIV Daten im Rahmen des Projekts Fenster wählen Sie" Hyperloop> Alle Sets', und wählen Sie die Option "Alle hinzufügen" unter "Verfügbare Sätze:" Abschnitt, um sicherzustellen, dass die gesamte PIV Daten Ensemble ausgewählt.
      2. Wählen Sie "Parameter" aus dem Pull-Down-Menü unter dem "Filter:" Abschnitt. Wählen Sie "Stapelverarbeitung" Option im Rahmen der "Operation:" Abschnitt. Klicken Sie auf 'Ausführen' 'Hyperloop' Nachbearbeitung der PIV-Daten zu starten.
    5. Compute wirbelndenStärke figure-protocol-24229 ) Felder sekundäre Strömungsstrukturen mit Hilfe der Bildakquisition und Nachverarbeitung Software zu erkennen. Wählen Sie die Operation "wirbelnde Kraft 'aus der Gruppe' extrahieren Skalarfelds: Rotation und Scherung '.
      1. Wiederholen Sie die Schritte 5.4.1-5.4.2 Nachverarbeitung 'Hyperloop' auszuführen.
    6. Erkennen kohärenten Strukturen durch figure-protocol-24690 und kontinuierliche Wavelet auf vorticity Feld verwandeln figure-protocol-24819 durch die Schaffung von MATLAB-Funktionen benutzerdefiniert und mit PIVmat 3,01-basierten MATLAB-Funktionen (Siehe "Ergänzenden Code File - MATLAB-Codes" zum Beispiel Code).
      1. Generieren Sie ein 2D-Array von Daten aus der folgenden Gleichung ein 2D-Ricker-Wavelet darstellt, die durch den Skalierungsfaktor zu initialisieren figure-protocol-25222 in Gleichung. 13 auf einen beliebigen Wert (Siehe "Ergänzenden Code File - MATLAB-Codes").
        figure-protocol-25390
      2. Führen Sie zweidimensionale Faltung oder Fourier-Multiplikation von vorticity figure-protocol-25548 Daten aus Schritt 5.4, mit 2D - Ricker - Wavelet - Funktion (Gl. 13) Wavelet - transformierten vorticity Feld zu erzeugen figure-protocol-25756 bei dem initialisierten Skalierungsfaktor figure-protocol-25869 . (Siehe "Ergänzenden Code File - MATLAB-Codes").
      3. Berechnen Sie die Shannon-Entropie figure-protocol-26035 der Wavelet-transformierten vorticity Feld figure-protocol-26149 durch Gl. 14 (Siehe "Ergänzenden Code File - MATLAB-Codes").
        figure-protocol-26287
      4. Ändern Sie den Skalierungsfaktor figure-protocol-26409 und ein neues 2D - Array von Daten zu erzeugen , die die 2D - Wavelet - Ricker (Eq. 13) (siehe Abbildung 6).
      5. Wiederholen Sie die Schritte 5.6.1 - 5.6.4, für eine Vielzahl von Skalierungsfaktoren ( figure-protocol-26704 Sehen, Feedback - Schleife in Abbildung 6.
      6. Erstellen Sie ein Diagramm der Shannon-Entropie figure-protocol-26893 vs. Wavelet-Skalierungsfaktor figure-protocol-26994 in Schritt 5.6.5 (siehe Abbildung 6). Suchen Sie eine optimale Wavelet-Skala figure-protocol-27159 entspricht, in der Regel zu einem lokalen Minimum in Shannon-Entropie figure-protocol-27300 . Wiederholen Sie Schritt 5.6.4 bei optimalen Wavelet-Skala (see Shannon - Entropie vs Wavelet - Skala Plot in Abbildung 6).
      7. Erstellen Sie ein Konturdiagramm der Wavelet-transformierten vorticity figure-protocol-27594 um den Faktor Wavelet-Skala auf den optimalen Wert der Shannon-Entropie entspricht figure-protocol-27748 .

    Ergebnisse

    Ergebnisse in 7A-D wurden nach der Nachbearbeitung sekundären Strömungsgeschwindigkeitsdaten (siehe Abbildungen 5, 6) erzeugt präsentiert von 2C-2D - PIV - System in 3A gezeigt erworben. Der Zufluss Zustand der gekrümmten Arterie Meßstrecke mit einer idealisierten "Typ IV" Stent Fraktur zugeführt wurde , die Arteria carotis Wellenform in Figur 4B gezeigt. Unsere frühere Studien haben die Empfindlichkeit ...

    Diskussion

    Das Protokoll in diesem Papier beschreibt den Erwerb von High-Fidelity-experimentellen Daten Particle Image Velocimetry Technik (PIV) und kohärente Struktur Nachweisverfahren unter Verwendung, dh., Kontinuierliche Wavelet-Transformationen, figure-discussion-266 , Geeignet für die Identifizierung von Wirbel und Strömungen schub dominiert. Analyse der experimentellen Daten von physiologischen Zuflüsse in Gegenwart eines idealisierten "Typ IV&q...

    Offenlegungen

    Keine Interessenkonflikte erklärt.

    Danksagungen

    Die Autoren danken für die Unterstützung von NSF Zuschuss CBET-0909678 und Finanzierung von der GW-Zentrum für Bionik und Bioinspirierte Engineering (COBRE). Wir danken den Studenten, Herr Christopher Popma, Frau Leanne Penna, Frau Shannon Callahan, Herr Shadman Hussain, Herr Mohammed R. NAJJARI und Frau Jessica Hinke um Hilfe im Labor und Herr Mathieu Barraja für die Unterstützung in CAD-Zeichnungen.

    Materialien

    NameCompanyCatalog NumberComments
    Acrylic tubes and sheetMcMaster-Carr Supply CompanyInlet and outlet pipes and material of the curved artery test section
    Object24 Desktop 3D printerStratasysDesktop rapid prototyping machine. http://www.stratasys.com
    VeroWhitePlus Opaque materialStratasysBuilding material for Object24 Desktop 3D printer
    Fullcure 705StratasysNon-toxic gel-like photopolymer Support material for Object24 Desktop 3D printer
    Ubbelohde viscometerCole ParmerYO-98934-12Toward measurement of kinematic viscosity of the blood-analog fluid
    VELP scientifica - ESP stirrer VELP ScientificaF206A0179Magnetic stirrer
    Ohaus Scout Pro SP 601 The Lab DepotSP4001Weigh scale
    RefractometerAtagoPAL-RIToward measurement of refractive index of blood-analog fluid
    Beakers, pipettes, syringes and spatulaSigma-Aldrich CLS710110,  CLS10031L, CLS71015, CLS71011 Z193216Toward handling materials required for blood-analog solution preparation
    Sodium IodideSigma-Aldrich383112-2.5KG Crystalline
    GlycerolSigma-AldrichG5516-1LLiquid
    Deionized Water--Liquid
    Sodium thiosulfate anhydrousSigma-Aldrich72049-250GPowder
    PIV Recording mediumLaVisionImager Intense 10HzPIV Image acquisition CCD camera
    PIV Illumination sourceNew Wave ResearchSolo III-15PIV Laser source, Nd:YAG laser, 532 nm, dual pulse 70 mJ/pulse
    PIV Imaging softwareLaVisionDaVis 7.2PIV data acquisition and instrument control
    PIV Seeding materialThermo-scientific  Flouro-MaxRed fluorescent polymer microspheres (≈ 7 µm); Dry dyed polystyrene (DVB) fluorescent microspheres emit bright and distinct colors when illuminated by the light of shorter  wavelengths than the emission wavelength. 

    Referenzen

    1. Dean, W. R. Note on the motion of a fluid in a curved pipe. Phil Mag. 7, 208-223 (1927).
    2. Dean, W. R. The streamline motion of a fluid in a curved pipe. Phil Mag. 7, 673-695 (1928).
    3. Lyne, W. H. Unsteady viscous flow in a curved pipe. J. Fluid. Mech. 45, 13-31 (1970).
    4. Glenn, A. L., Bulusu, K. V., Shu, F., Plesniak, M. W. Secondary flow structures under stent-induced perturbations for cardiovascular flow in a curved artery model. Int. J. Heat Fluid Fl. 35, 76-83 (2012).
    5. Bulusu, K. V., Plesniak, M. W. Secondary flow morphologies due to model stent-induced perturbations in a 180° curved tube during systolic deceleration. Exp. Fluids. 54, 1493 (2013).
    6. Bulusu, K. V., Hussain, S., Plesniak, M. W. Determination of secondary flow morphologies by wavelet analysis in a curved artery model with physiological inflow. Exp. Fluids. 55, 1832 (2014).
    7. Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553-563 (1955).
    8. Sheriff, J., Bluestein, D., Girdhar, G., Jesty, J. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38 (4), 1442-1450 (2010).
    9. Popma, J. J., Tiroch, K., Almonacid, A., Cohen, S., Kandzari, D. E., Leon, M. B. A qualitative and quantitative angiographic analysis of stent fracture late following sirolimus-eluting stent implantation. Am. J. Cardiol. 103 (7), 923-929 (2009).
    10. Kim, S. H., et al. A fractured sirolimus-eluting stent with a coronary aneurysm. Ann. Thorac. Surg. 88, 664-665 (2009).
    11. Adlakha, S., et al. Stent fracture in the coronary and peripheral arteries. J. Interv. Cardiol. 23 (4), 411-419 (2010).
    12. Alexopoulos, D., Xanthopoulou, I. Coronary stent fracture: How frequent it is? Does it matter. Hellenic J. Cardiol. 52, 1-5 (2011).
    13. Nair, R. N., Quadros, K. Coronary stent fracture: A review of the literature. Cardiac. Cath. Lab Director. 1, 32-38 (2011).
    14. Jaff, M., Dake, M., Popma, J., Ansel, G., Yoder, T. Standardized evaluation and reporting of stent fractures in clinical trials of noncoronary devices. Catheter Cardiovasc. Interv. 70, 460-462 (2007).
    15. Holdsworth, D., Norley, C. J., Frayne, R., Steinman, D. A., Rutt, B. K. Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiol. Meas. 20 (3), 219-240 (1999).
    16. Deutsch, S., Tarbell, J. M., Manning, K. B., Rosenberg, G., Fontaine, A. A. Experimental fluid mechanics of pulsatile artificial blood pumps. Annu. Rev. Fluid Mech. 38, 65-86 (2006).
    17. Yousif, M. Y., Holdsworth, D. W., Poepping, T. L. A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp. Fluids. 50, 769-774 (2011).
    18. Budwig, R. Refractive index matching methods for liquid flow investigations. Exp. Fluids. 17, 350-355 (1994).
    19. Hunt, J. C. R., Wray, A. A., Moin, P. Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research. , (1988).
    20. Adrian, R. J., Christensen, K. T., Liu, Z. C. Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids. 29, 275-290 (2000).
    21. Chong, M., Perry, A. E., Cantwell, B. J. A general classification of three-dimensional flow fields. Phys. Fluids A. 2 (5), 765-777 (1990).
    22. Zhou, J., Adrian, R. J., Balachandar, S., Kendall, T. M. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353-396 (1999).
    23. Haller, G. An objective definition of a vortex. J. Fluid Mech. 525, 1-26 (2005).
    24. Chakraborty, P., Balachander, S., Adrian, R. J. On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189-214 (2005).
    25. Wallace, J. M. Twenty years of experimental and direct numerical simulation access to the velocity gradient tensor: What have we learned about turbulence. Phys. Fluids. 21, 021301 (2009).
    26. Farge, M., Guezennec, Y., Ho, C. M., Meneveau, C. Continuous wavelet analysis of coherent structures. Center for Turbulence Research, Proceedings of the Summer Program. , 331-348 (1990).
    27. Himburg, H. A., Friedman, M. H. Correspondence of Low Mean Shear and High Harmonic Content in the Porcine Iliac Arteries. ASME J. Biomedical Eng. 128, 852-856 (2006).
    28. Dai, G., et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. PNAS. 101 (41), 14871-14876 (2004).
    29. Hanus, J., Zahora, J. Measurement and comparison of mechanical properties of nitinol stents. Physica Scripta. 118, 264-267 (2005).
    30. Segur, J. B., Oberstar, H. E. Viscosity of glycerol and its aqueous solutions. Ind. Eng. Chem. 43, 2117-2120 (1951).
    31. Adrian, R. J., Westerweel, J. . Particle image velocimetry. , (2011).
    32. Raffel, M., Willert, C. E., Wereley, S. T., Kompenhans, J. . Particle image velocimetry - A practical guide, 2nd ed. , (2007).
    33. Moisy, F. . PIVmat 3.01 software. , (2013).
    34. Ruppert-Felsot, J. E., Praud, O., Sharon, E., Swinney, H. L. Extraction of coherent structures in a rotating turbulent flow experiment. Physical Review E. 72, 016311 (2005).
    35. Bulusu, K. V., Plesniak, M. W. Shannon entropy-based wavelet transform methods for autonomous coherent structure identification in fluid flow field data. Entropy. 17 (10), 6617-6642 (2015).

    Nachdrucke und Genehmigungen

    Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

    Genehmigung beantragen

    Weitere Artikel entdecken

    BioengineeringHeft 113Typ IV Stent Ausf lleAtherosclerosisSekund rstr mungsstrukturenCoherent StrukturerkennungQ Kriteriumci Kriteriumkontinuierliche Wavelet TransformationenShannon Entropie

    This article has been published

    Video Coming Soon

    JoVE Logo

    Datenschutz

    Nutzungsbedingungen

    Richtlinien

    Forschung

    Lehre

    ÜBER JoVE

    Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten