JoVE Logo

Anmelden

Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

Islet β cell death precedes development of type 1 diabetes, and detecting this process may allow for early therapeutic intervention. Here, we provide a detailed description of how to measure differentially methylated INS DNA species in human serum as a biomarker of β cell death.

Zusammenfassung

The death of islet β cells is thought to underlie the pathogenesis of virtually all forms of diabetes and to precede the development of frank hyperglycemia, especially in type 1 diabetes. The development of sensitive and reliable biomarkers of β cell death may allow for early therapeutic intervention to prevent or delay the development of diabetes. Recently, several groups including our own have reported that cell-free, differentially methylated DNA encoding preproinsulin (INS) in the circulation is correlated to β cell death in pre-type 1 diabetes and new-onset type 1 diabetes. Here, we present a step-by-step protocol using digital PCR for the measurement of cell-free INS DNA that is differentially methylated at cytosine at position -69 bp (relative to the transcriptional start site). We demonstrate that the assay can distinguish between methylated and unmethylated cytosine at position -69 bp, is linear across several orders of magnitude, provides absolute quantitation of DNA copy numbers, and can be applied to samples of human serum from individuals with new-onset type 1 diabetes and disease-free controls. The protocol described here can be adapted to any DNA species for which detection of differentially methylated cytosines is desired, whether from circulation or from isolated cells and tissues, and can provide absolute quantitation of DNA fragments.

Einleitung

Typ - 1 - Diabetes (T1D) ist eine Autoimmunerkrankung , die durch die Zerstörung der Insulin produzierenden Inselzellen β - Zellen durch autoreaktive T - Zellen 1 gekennzeichnet ist. Die Diagnose von T1D ist in der Regel bei der Messung von Hyperglykämie (Blutzucker> 200 mg / dl) in einem schlanken, jungen Person gemacht, die mit einer Ketoazidose als Beweis für Insulinmangel darstellen könnten. Zum Zeitpunkt der Diagnose von T1D gibt es Hinweise für einen wesentlichen Verlust von β - Zellfunktion und Masse (50-90%) 2. In klinischen Studien wurden mehrere immunmodulatorischen Medikamente, die zum Zeitpunkt der Diagnose eingeleitet wurden führte zur Stabilisierung der β-Zellfunktion (und vermutlich Masse), aber keine haben in klinischer Remission der Erkrankung führte, eine Feststellung, dass die Forderung nach der Entwicklung erhöht hat von Biomarkern für frühere Erkennung der Krankheit und für die Längs Verfolgung der Wirksamkeit von Kombinationstherapien 3,4. Die Bemühungen der internationalen Konsortien, eine solchedas Human Islet Research Network Consortium s an den National Institutes of Heath 5, haben die Notwendigkeit zur Entwicklung von Biomarkern betont , dass in T1D auf β Zellstress und Tod konzentrieren.

Im Einklang mit diesen Bemühungen haben unsere Gruppe und andere kürzlich Biomarker - Assays entwickelt, die epigenetisch modifizierte DNA - Fragmente messen zirkulierenden , die von sterbenden β - Zellen 6 in erster Linie entstehen - 9. In allen veröffentlichten Assays bisher hat sich der Schwerpunkt auf die Quantifizierung des humanen kodierenden Gens Präproinsulin (INS) gewesen, der größer Grade unmethylierte CpG - Stellen in den Codierungs- und Promotorregionen im Vergleich zu anderen Zelltypen veranschaulicht. Die Befreiung von nicht - methylierten INS DNA - Fragmente wurde die Hypothese aufgestellt , als in erster Linie vom Sterben (nekrotischen, apoptotischen) β - Zellen entstehen. Unsere jüngsten Studien haben gezeigt , dass in der Jugend, Erhöhungen in sowohl unmethylierte und methylierte DNA INS an Position -69 bp (bezogen auf ter Transkriptionsstartstelle) wurden in neu einsetzende T1D beobachtet und diente zusammen als spezifische Biomarker für diese Population 6. Diese Biomarker Assays beinhalten die Isolierung von zellfreien DNA aus Serum oder Plasma unter Verwendung handelsüblicher Kits Spin, gefolgt von einer Bisulfit-Umwandlung von der isolierten DNA (an nicht-methylierte Cytosine bis uracile konvertieren, so dass methylierte Cytosine intakt).

In diesem Bericht beschreiben wir die technischen Aspekte der Serumprobe Sammlung, Isolierung von zellfreien DNA aus Serum, Bisulfitumwandlung und Leistung von Tröpfchen digitalen PCR (von nun an, digitale PCR) für differentiell methyliert INS DNA.

Access restricted. Please log in or start a trial to view this content.

Protokoll

Ethics Statement: Protocols were approved by the Indiana University Institutional Review Board. Parents of subjects provided written informed consent, and children older than 7 years provided assent for their participation.

1. Serum Processing

NOTE: The assay as described has been rigorously tested using human serum isolated as follows.

  1. Collect blood in one red top (no-additive; uncoated) blood collection tube.
  2. Let sit at room temperature for 30 min to allow the clot to form.
  3. Centrifuge tube at 2,000 x g for 10 min at room temperature. Transfer the supernatant (serum) to a new tube designated for serum storage (polypropylene screw top tubes, size dependent on samples).
  4. Store samples at -80 ºC until ready for DNA isolation.

2. Serum DNA Extraction

NOTE: DNA is extracted with a DNA extraction kit using 50 µl of serum (recommended), following manufacturer's protocol with some modifications.

  1. Prepare 200 µl lysis buffer + 1 µl poly(A) (5 µg) per sample in an microcentrifuge tube. Vortex for 15 sec. Set aside until Step 2.3.
  2. Take serum samples from -80 ºC freezer and thaw at room temperature. Bring serum sample volume up to 200 µl total using phosphate-buffered saline (PBS, with calcium chloride and magnesium chloride).
  3. Lyse the sample by adding 20 µl protease (1.4 Anson units/ml) to sample, followed by 200 µl lysis buffer/polyA mix (from Step 2.2) and vortex for 8 sec. Incubate sample at 56 °C for 10 min, then briefly centrifuge for 7 sec at top speed in a microcentrifuge (>10,000 x g).
  4. Precipitate DNA by adding 230 µl 100% ethanol to sample and vortex for 8 sec. Briefly centrifuge for 7 sec at top speed (>10,000 x g).
  5. Apply the DNA to the spin column by adding 600 µl sample mixture to mini spin column. Centrifuge at 6,000 x g for 1 min. Discard the flow-through and place column in a clean tube.
  6. Wash the DNA by adding 500 µl wash buffer 1 to the column. Centrifuge at 6,000 x g for 1 min. Discard the flow-through and place column in a clean tube. Add 500 µl wash buffer 2 to column and centrifuge at top speed (>10,000 x g) for 3 min. Place column in a new 1.5 ml microcentrifuge tube and centrifuge at top speed again for 1 min.
  7. Elute the DNA by placing column in a new 1.5 ml microcentrifuge tube and adding 60 µl elution buffer directly on the filter. It is important to switch tips between samples to prevent cross contamination. Incubate at room temperature for 5 min, then centrifuge at 6,000 x g for 1 min. Add another 60 μl of elution buffer and centrifuge at 6,000 x g for 1 min. 
  8. Store DNA at -20 ºC for later use, or proceed immediately to bisulfite conversion.

3. Bisulfite Conversion

NOTE: Bisulfite conversion is performed using a bisulfite conversion kit, following the manufacturer's protocol with some modifications.

  1. To convert unmethylated cytosines to uracils, add 130 µl of bisulfite conversion reagent to 20 µl of DNA from step 2.7 in a PCR tube (single 0.2 ml PCR tube or 8-strip PCR tubes). Save the remaining 40 µl of DNA for future use, or use in replicate reactions. Mix 20 times by pipetting up and down and centrifuge briefly to make sure no drops are on sides or lid. Incubate in a water bath or thermal cycler as follows: 98 °C for 8 min, 54 °C for 60 min, 4 °C for 5 min.
    1. Proceed to step 3.2 or store at 4 °C for up to 20 hr.
  2. Add 600 µl of binding buffer to spin column and place the column in the provided collection tube. Apply the bisulfited DNA to column and mix by pipetting up and down 10 times. Centrifuge at top speed (>10,000 x g) for 30 sec. Discard flow-through.
  3. Wash DNA by adding 100 µl of wash buffer to column and centrifuge at top speed (>10,000 x g) for 30 sec.
  4. Perform desulphonation to remove sulphonate group to finalize the conversion of unmethylated cytosines to uracil by adding 200 µl of desulphonation buffer to the column. Let stand at room temperature for 20 min, then centrifuge at top speed (>10,000 x g) for 30 sec.
  5. Wash DNA by adding 200 µl of wash buffer to the column and centrifuge at full speed for 30 sec. Discard the flow-through and repeat this wash step.
  6. Place the column into a 1.5 ml microcentrifuge tube. Elute DNA by adding 10 µl elution buffer directly to column filter. Incubate for 1 min. Centrifuge for 30 s at full speed to elute DNA. Quantify recovered DNA by spectrophotometry at A260.
    NOTE: The DNA detected by spectrophotometry represents primarily the carrier polyA DNA that was added at step 2.3 above. Typically, recovery of polyA is ≥85% of the input (>4.25 µg).
  7. Store DNA at -20 °C until ready to proceed with digital PCR.

4. Multiplex Digital PCR

  1. Make a master mix with enough solution for each sample and control. Include at least one sample containing water (negative control), one sample of a plasmid containing unmethylated INS (1 pg, positive control), one sample of plasmid containing methylated INS (1 pg, positive control), and one sample containing a 1:1 mixture of plasmids.
    1. To prepare the PCR master mix, add 12.5 µl per reaction of PCR buffer (e.g., 125 µl per 10 samples), 1.25 µl per reaction primer/probe mix (e.g., 12.5 µl per 10 samples), 8.25 µl per reaction water (e.g., 82.5 µl per 10 samples), 0.5 µl per reaction EcoR1 enzyme (e.g., 5 µl per 10 samples).
      NOTE: Primers and probes used here are as follows: Forward Primer: 5'-GGAAATTGTAGTTTTAGTTTTTAGTTATTTGT-3'; Reverse Primer: 5'-AAAACCCATCTCCCCTACCTATCA-3'; FAM probe: FAM-5'-ACCCCTACCACCTAAC-3'-MGB; VIC probe: VIC-5'-ACCCCTACCGCCTAAC-3'-MGB.
  2. Set up multiplex PCR reaction in a 96-well plate. Add 19.5 µl of master mix to each well. Add 2.5 µl of bisulfite converted DNA sample into each appropriate well (save the remaining 7.5 µl of bisulfite converted DNA or use in replicate reactions). Mix by pipetting up and down several times.
    NOTE: All 8 wells in a row must contain sample or buffer control.
  3. Seal with a foil seal using a plate sealer and centrifuge in a plate spinner until there is no liquid on the sides of the wells.
  4. Set up the automated droplet generator on the touchscreen.
    NOTE: All 8 wells in the cartridge must contain sample or buffer control.
    1. Set the number of rows being used by touching the row(s) in which samples are loaded into on the 96-well plate from step 4.2 and highlight the row in blue to indicate an active row.
    2. Load consumables from back to front to avoid contamination. To start, add cartridges along the back row of the instrument. Load tips into center row of the instrument.
      NOTE: The cartridges can only fit into the holders in the correct orientation.
    3. Place 96-well plate into the instrument. Remove a cold block from -20 °C freezer and place a new skirted 96-well plate into it. Place it inside the instrument next to the sample loaded 96-well plate.
    4. Add oil to dispenser in the front of the instrument. Select type of oil on touchscreen.
    5. Touch the blue start button to start the run. Confirm plate setup and touch start run button to begin.
  5. Once finished, remove the 96-well plate that contains the newly formed droplets and seal with a foil seal using a plate sealer.
  6. Perform PCR10 on a thermal cycler using the following program: 95 °C for 10:00 min; 40 cycles at: 94 °C for 00:30 min, 57.5 °C for 01:00 min; 98 °C for 10:00 min; 12 °C for 10 min or up to 24 hr.
  7. Place the plate on the droplet reader and set up the reader.
    1. Click on the setup tab. Open a new template by clicking template > new. Enter a file name.
    2. Use the well editor to set the parameters for each sample. Give each sample a unique name, set experiment to Rare Event Detection (R-RED), and set master mix to the mix used in step 4.1.
    3. Give Target 1 a name (i.e., unmethylated) and set Target 1 as unknown (U). Give Target 2 a name (i.e., methylated) and set Target 2 as reference (R).
    4. Click Run tab to start the run. In the run options window, select the detection chemistry (FAM/VIC).

5. Data Analysis

  1. Open results in analyze tab and analyze using 2-D plot based on positive controls (see Figure 1).
  2. Export CSV file generated by droplet reader to a spreadsheet program for data analysis.
  3. To generate "copies per µl" of serum, use the formula: (concentration*250)/(volume of serum used for DNA isolation in µl).6
    NOTE: The data is typically converted to log10 when acquired from human serum to ensure normal distribution. Alternatively, data can be plotted on a log10 scale and analyzed by non-parametric statistics.

Access restricted. Please log in or start a trial to view this content.

Ergebnisse

Um Daten in geeigneter Weise zu interpretieren, verwenden wir Plasmid - Kontrollen sowohl für die unmethylierte und methylierte Ziel INS DNA in jeder digitalen PCR - Lauf. Diese Kontrollen stellen sicher, dass Signale an methylierter und nicht methylierter DNA entsprechen, sind klar zu unterscheiden. Abbildung 1 zeigt die 2-D Streudiagramme zu Tröpfchen für Plasmid Kontrollen enthält Bisulfit umgewandelt unmethylierte INS DNA (1A) e...

Access restricted. Please log in or start a trial to view this content.

Diskussion

Die Methylierung von Cytosin durch DNA-Methyltransferasen ermöglicht die epigenetische Kontrolle der Transkription bei vielen Genen. Das INS - Gen beim Menschen wird fast ausschließlich in islet β - Zellen exprimiert, und es scheint Silencing seiner Transkriptions 11 eine Korrelation zwischen der Häufigkeit der Methylierung von Cytosin in dem INS - Gen zu sein. Als solches zeigen die meisten Zelltypen wesentlich höhere Frequenzen der Methylierung des INS - Gen an verschiedenen ...

Access restricted. Please log in or start a trial to view this content.

Offenlegungen

The authors have nothing to disclose.

Danksagungen

This work was supported by National Institutes of Health grant UC4 DK104166 (to RGM). We wish to acknowledge the assistance of the Indiana Diabetes Research Center Translation Core supported by National Institutes of Health grant P30 DK097512.

Access restricted. Please log in or start a trial to view this content.

Materialien

NameCompanyCatalog NumberComments
Red Top Vacutainer Beckon Dickinson366441no additive, uncoated interior, 10 ml
Cryovial TubeSimportT310-3Apolypropylene, screw cap tube, any size
QIAamp DNA Blood Mini KitQiagen51106
Poly(A)SigmaP9403disloved in TE buffer (10 mM Tris-Cl pH 8.0 + 1 mM EDTA) to 5 µg/µl 
Absolute Ethanol (200 Proof)Fisher ScientificBP2818-500
DPBS (with CaCl2 and MgCl2)SigmaD8662
0.2 ml PCR 8-strip TubesMidSciAVST
8-strip Caps, DomeMidSciAVSTC-N
EZ DNA Methylation-Lightning KitZymoD5031
ddPCR Supermix for Probes (No dUTP)Biorad1863024
Buffer Control for ProbesBiorad1863052
Human Unmethylated/Methylated Primer/Probe mixLife TechnologiesAH21BH1
EcoR1New England BiolabsR0101L
twin.tec PCR Plate 96, semi-skirtedEppendorf951020346
Pierceable Foil Heat SealBiorad1814040
PX1 PCR Plate SealerBiorad1814000
QX200 AutoDG Droplet Digital PCR SystemBiorad1864101
Automated Droplet Generation Oil for ProbesBiorad186-4110
DG32 Cartridge for Automated Droplet GeneratorBiorad186-4108
Pipet Tips for Automated Droplet GeneratorBiorad186-4120
Pipet Tip Bins for Automated Droplet GeneratorBiorad186-4125
C1000 Touch Thermal CyclerBiorad1851197
QX200 Droplet ReaderBiorad186-4003
ddPCR Droplet Reader OilBiorad186-3004

Referenzen

  1. Lehuen, A., Diana, J., Zaccone, P., Cooke, A. Immune cell crosstalk in type 1 diabetes. Nat. Rev. Immunol. 10 (7), 501-513 (2010).
  2. Sherry, N. A., Tsai, E. B., Herold, K. C. Natural history of beta-cell function in type 1 diabetes. Diabetes. 54, Suppl 2 32-39 (2005).
  3. Maganti, A., Evans-Molina, C., Mirmira, R. From immunobiology to β-cell biology: the changing perspective on type 1 diabetes. Islets. 6 (2), 28778(2014).
  4. Matthews, J. B., Staeva, T. P., Bernstein, P. L., Peakman, M., von Herrath, M. ITN-JDRF Type 1 Diabetes Combination Therapy Assessment Group Developing combination immunotherapies for type 1 diabetes: recommendations from the ITN-JDRF Type 1 Diabetes Combination Therapy Assessment Group. Clin. Exp. Immunol. 160 (2), 176-184 (2010).
  5. Human Islet Research Network | HIRN. , Available from: https://hirnetwork.org/ (2016).
  6. Fisher, M. M., Watkins, R. A., et al. Elevations in Circulating Methylated and Unmethylated Preproinsulin DNA in New-Onset Type 1 Diabetes. Diabetes. 64 (11), 3867-3872 (2015).
  7. Husseiny, M. I., Kaye, A., Zebadua, E., Kandeel, F., Ferreri, K. Tissue-Specific Methylation of Human Insulin Gene and PCR Assay for Monitoring Beta Cell Death. PLoS ONE. 9 (4), 94591(2014).
  8. Herold, K. C., Usmani-Brown, S., et al. β cell death and dysfunction during type 1 diabetes development in at-risk individuals. J. Clin. Invest. 125 (3), 1163-1173 (2015).
  9. Lehmann-Werman, R., Neiman, D., et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc. Natl. Acad. Sci. U.S.A. 113 (13), 1826-1834 (2016).
  10. Saiki, R. K., Gelfand, D. H., et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 239 (4839), 487-491 (1988).
  11. Kuroda, A., Rauch, T. A., et al. Insulin gene expression is regulated by DNA methylation. PloS One. 4 (9), 6953(2009).
  12. Akirav, E. M., Lebastchi, J., et al. Detection of β cell death in diabetes using differentially methylated circulating DNA. Proc. Natl. Acad. Sci. U.S.A. 108 (47), 19018-19023 (2011).
  13. Fisher, M. M., Perez Chumbiauca, C. N., Mather, K. J., Mirmira, R. G., Tersey, S. A. Detection of islet β-cell death in vivo by multiplex PCR analysis of differentially methylated DNA. Endocrinology. 154 (9), 3476-3481 (2013).
  14. Patterson, K., Molloy, L., Qu, W., Clark, S. DNA methylation: bisulphite modification and analysis. J. Vis. Exp. (56), (2011).
  15. Derks, S., Lentjes, M. H. F. M., Hellebrekers, D. M. E. I., de Bruïne, A. P., Herman, J. G., van Engeland, M. Methylation-specific PCR unraveled. Cell. Oncol. 26 (5-6), 291-299 (2004).
  16. Husseiny, M. I., Kuroda, A., Kaye, A. N., Nair, I., Kandeel, F., Ferreri, K. Development of a quantitative methylation-specific polymerase chain reaction method for monitoring beta cell death in type 1 diabetes. PloS One. 7 (10), 47942(2012).
  17. Hindson, B. J., Ness, K. D., et al. High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number. Anal. Chem. 83 (22), 8604-8610 (2011).
  18. Sozzi, G., Roz, L., et al. Effects of prolonged storage of whole plasma or isolated plasma DNA on the results of circulating DNA quantification assays. J. Natl. Cancer Inst. 97 (24), 1848-1850 (2005).

Access restricted. Please log in or start a trial to view this content.

Nachdrucke und Genehmigungen

Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

Genehmigung beantragen

Weitere Artikel entdecken

GenetikHeft 118BiomarkerIsletDiabetesInsulinDigital PCREpigenetik

This article has been published

Video Coming Soon

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten