JoVE Logo

Anmelden

Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

Hier stellen wir ein Protokoll vor, um den Biomarker und den Überlebensprediger von Brustkrebs zu erforschen, das auf der umfassenden Analyse von gebündelten klinischen Datensätzen basiert, die aus einer Vielzahl von öffentlich zugänglichen Datenbanken abgeleitet werden, und dabei die Strategie des Ausdrucks, der Korrelation und Überlebensanalyse Schritt für Schritt.

Zusammenfassung

In den letzten Jahren wurden neue Datenbanken entwickelt, um die Barrieren für die Annäherung an die experimentellen genetischen Daten des Krebses zu verringern und damit den Forschern die Möglichkeit zu geben, Gene, Proben und klinische Daten über verschiedene Krebsarten zu analysieren und zu interpretieren. Hier beschreiben wir ein praktisches Operationsverfahren, bei dem ID1 (Inhibitor von DNA-Bindungsproteinen 1) als Beispiel die Expressionsmuster von Biomarker und Überlebensvorhersagen von Brustkrebs anhand von gebündelten klinischen Datensätzen, die von gebündelten klinischen Datensätzen abgeleitet werden, charakterisiert werden. Online-zugängliche Datenbanken, darunter ONCOMINE, bcGenExMiner v4.0 (Brustkrebs-Gen-Ausdruck miner v4.0), GOBO (Gene expression-basiertes Outcome for Breast cancer Online), HPA (Der menschliche Proteinatlas) und Kaplan-Meier Plotter. Die Analyse begann mit der Abfrage des Ausdrucksmusters des Gens von Interesse (z.B. ID1) bei Krebsproben vs. normalen Proben. Anschließend wurde die Korrelationsanalyse zwischen ID1 und klinikathologischen Merkmalen bei Brustkrebs durchgeführt. Als nächstes wurden die Expressionsprofile von ID1 nach verschiedenen Untergruppen geschichtet. Schließlich wurde der Zusammenhang zwischen ID1-Ausdruck und Überlebensergebnis analysiert. Das Operationsverfahren vereinfacht das Konzept, multidimensionale Datentypen auf der Genebene aus verschiedenen Datenbanken und Testhypothesen auf Rezidiven und genomischen Kontext von Genveränderungsereignissen bei Brustkrebs zu integrieren. Diese Methode kann die Glaubwürdigkeit und Repräsentativität der Schlussfolgerungen verbessern und damit eine informative Perspektive auf ein Gen von Interesse bieten.

Einleitung

Brustkrebs ist eine heterogene Erkrankung mit unterschiedlichen Prognose-und Behandlungsstrategien in verschiedenen molekularen Subtypen, bei der die Pathogenese und-entwicklung wahrscheinlich mit unterschiedlichen molekularen Mechanismen 1, 2 in Verbindung gebracht werden. , 3. Die Identifizierung eines therapeutischen Ziels dauert jedoch in der Regel Jahre oder sogar Jahrzehnte, von der ersten Entdeckung in derGrundlagenforschung bis zur klinischen Anwendung 4. Die genomweite Anwendung der Hochdurchsatz-Sequenzierungstechnologie für Krebsgenom hat den Prozess der Suche nach wertvollen Biomarkern oder therapeutischen Zielen 5 stark vorangetrieben.

Die überwältigende Menge an Krebsgenomik-Daten, die von den großen Krebs-Genomik-Plattformen wie dem ICGC (International Cancer Genome Consortium) und dem TCGA (The Cancer Genome Atlas) generiert werden, stellt die Forscher vor eine große Herausforderung, Daten durchzuführen. Exploration, Integration und Analytik, insbesondere für Anwender, die nicht intensiv in Informatik und Berechnung 6,7, 8,9,10. In den letzten Jahren wurden neue Datenbanken (z.B. ONCOMINE, bcGenExMiner v4.0 und Kaplan-Meier Plotter, etc.) entwickelt und entwickelt, um die Messlatte für die Annäherung an die komplexen genetischen Daten des Krebses zu senken und so den Forschern die Analyse zu erleichtern und Interpretieren Sie die Gene, Proben und klinischen Daten über verschiedene Krebsarten 11. Ziel dieses Protokolls ist es, eine Forschungsstrategie zu beschreiben, die mit mehreren Ebenen von Geninformationen aus einer Reihe von Open-Access-Datenbanken integriert ist, die von einer Vielzahl von Forschern weithin anerkannt wurden, um die potenziellen Biomarker zu identifizieren und Prognostische Faktoren für Brustkrebs.

Die ONCOMINE Datenbank ist eine webbasierte Data-Mining-Plattform mit Krebs-Mikroarray-Informationen und soll die Entdeckung neuartiger Biomarker und therapeutischer Ziele11 erleichtern. Derzeit gibt es in dieser Datenbank 11,12mehr als 48 Millionen Genexpressionsmessungen von 65Genexpressionsdatensätzen. Die bcGenExMiner v4.0 (ein kostenloses Tool für gemeinnützige Einrichtung), auch Brustkrebs Gene-Expression Miner genannt, ist eine benutzerfreundliche webbasierte Anwendung, die DNA-Mikroarrays Ergebnisse von 3.414 erholten Brustkrebspatientinnen enthält und 1.209 Erfahrungen erlebten. Abstimmungsvolle Veranstaltung13. Es wurde entwickelt, um die Leistung der genetischen Prognoseanalyse mit statistischer Software und-Paketen zu verbessern.

Das GOBO ist ein multifunktionales, benutzerfreundliches Online-Tool mit Mikroarrox-Informationen (z.B. Affymetrix U133A) aus einem 51-Proben-Brustkrebszellensatz und einem 1881-Proben-Brusttumordatensatz, der eine Vielzahl von Analysen ermöglicht 14. In der GOBO-Datenbank gibt es eine Vielzahl von Anwendungen, die eine schnelle Analyse von Genexpressionsprofilen in verschiedenen molekularen Subtypen von Brusttumoren und Zelllinien, das Screening auf mitausgedrückte Gene zur Erzeugung potenzieller Metagen und das Screening von Co-Expressen für die Entstehung potenzieller Metagen und die Analyse von Genexpressionsprofilen für die Entstehung potenzieller Metagen und die Analyse von Genexpressionsprofilen in verschiedenen molekularen Subtypen von Brusttumoren und Zelllinien, das Screening auf mitausgedrückte Gene zur Erzeugung potenzieller Metenen und die Bereitstellung von Korrelationsanalyse zwischen Ergebnis und Genexpression von einzelnen Genen, Gensätzen oder Gen-Signaturen in Brustkrebsdaten setzen sich auf 15.

Der Human Protein Atlas ist ein Open-Access-Programm, das für Wissenschaftler entwickelt wurde, um menschliche Proteome zu erforschen, die bereits zu einer Vielzahl von Publikationen auf dem Gebiet der menschlichen Biologie und Krankheit beigetragen haben. Der Human Protein Atlas ist als europäische Kernressource für Life-Science-Community 16,17anerkannt.

Der Kaplan Meier Plotter ist ein Online-Tool, das die Genexpression und klinische Daten gleichzeitig integriert und die prognostizistische Wirkung von 54.675 Genen auf der Grundlage von 10.461 KrebsProben, darunter 1.065 gastric, 2.437 Lunge, 1.816 Eierstöcke und 5.143, ermöglicht. Brustkrebspatientinnen mit einer mittleren Nachbeobachtung von 33/49/40/69 Monate18. Informationen zur Genexpression, zum rückfallfreien Überleben (RFS) und zum Gesamtüberleben (OS) sind aus dieser Datenbank19,20heruntergeladen.

Hier beschreiben wir ein praktisches Operationsverfahren, bei dem mehrere öffentlich zugängliche Datenbanken verwendet werden, um Veränderungsmuster in der Expression des Interesses über mehrere Krebsstudien hinweg zu vergleichen, zu analysieren und zu visualisieren, mit dem Ziel, die Expressionsprofile, prognostische Werte und mögliche biologische Funktionen bei Brustkrebs. So haben neuere Studien die onkogenen Eigenschaften von ID-Proteinen bei Tumoren aufgezeigt und waren mit bösartigen Merkmalen in Verbindung gebracht worden, darunter zelluläre Transformation, Verewigung, verstärkte Proliferation und Metastasen 21, 22,23. Allerdings spielt jedes Mitglied der ID-Familie unterschiedliche Rollen in verschiedenen Arten von soliden Tumoren, und ihre Rolle bei Brustkrebs bleibt unklar24. In früheren Studien, die mit dieser Methode untersucht wurden, stellten wir fest, dass ID1 ein aussagekräftiger prognostischer Indikator für Brustkrebs 25 war. Daher wird das Protokoll ID1 als Beispiel für die Einführung der Data-Mining-Methoden nehmen.

Die Analyse beginnt damit, das Ausdrucksmuster des Gens von Interesse an Krebsproben vs. normalen Proben in ONCOMINE zu hinterfragen. Dann wurde der Ausdruck Korrelation von Genen von Interesse an Brustkrebs mit dem bc-GenExMiner v4.0, GOBO und ONCOMINE durchgeführt. Als nächstes wurden die Expressionsprofile von ID1 nach verschiedenen Untergruppen mit den oben genannten drei Datenbanken geschichtet. Schließlich wurde der Zusammenhang zwischen ID1-Ausdruck und Überleben aus mit bc-GenExMiner v4.0, dem menschlichen Proteinatlas, und Kaplan-Meier-Plotter analysiert. Der Operationsvorgang wurde als Flussdiagramm in Abbildung1 gezeigt.

Access restricted. Please log in or start a trial to view this content.

Protokoll

1. Ausdrucksmuster Analyse

  1. Gehen Sie zur ONCOMINE Webschnittstelle26.
  2. Erhalten Sie die relativen Expressionswerte des Gens ID1 in verschiedenen Arten von bösartigen Erkrankungen, indem Sie ID1 in die Suchboxeingeben.
  3. Wählen Sie den Analysetyp aus dem Menü Primärfilter . Wählen Sie dann Krebs vs . NormaleAnalyse, Brustkrebs vs. NormaleAnalyse.
  4. Wählen Sie die Gene-Übersicht aus dem Menü "OTHER VIEWS ". Setzen Sie die Schwelle des P-Wertesauf 0.01. Laden Sie die Zahlen herunter.
    Hinweis: Die Schwelle für den Faltwechsel beträgt 2, wie in der vorherigen Studie27beschrieben.

2. Ausdruckskorrelation Analyse

  1. Gehen Sie zur bc--GenExMiner v4.0 Webschnittstelle28.
  2. Wählen Sie CORRELATION aus dem ANALYSIS-Menü , klicken Sie auf den EXHAUSTIVE-Button. Geben Sie ID1 in das Suchfeld ein. Drücken Sie den Knopf "Absenden" und die Startanalyse.
    Hinweis: Die Standardeinstellung zeigt die Korrelationsanalyse aller Patienten, die in verschiedenen Subtypen von Brustkrebs durch Drücken des Subtyps Molecule genauer sein kann.

3. Untergruppenanalyse

  1. Untergruppenanalyse in bc-GenExMiner v4.0
    1. Gehen Sie zur bc--GenExMiner v4.0 Webschnittstelle28.
    2. Wählen Sie EXPRESSION aus dem ANALYSIS-Menü , drücken Sie den EXHAUSTIVE-Button. Geben Sie ID1 in das Suchfeld ein und drücken Sie den Knopf Eingabe-und Startanalyseknopf.
    3. Klicken Sie auf den Nodal-Status (LN) und Scarff Bloom & Richardson-Sortenstatus (SBR) , um die vollständigen Bilder zu sehen. In den SBR-Bildern drücken Sie den Knopf unten, um die P-Werteder Figuren zu visualisieren. Laden Sie die Zahlen herunter.
  2. Subgroup-Analyse in Gene expressionsbasierten Outcome for Breast Cancer Online (GOBO)
    1. Gehen Sie zur GOBO-Webschnittstelle14.
    2. Tippen Sie das Ga-Symbol von Interesse ID1 auf den Bildschirm hochladen Sie den Genset.
    3. Setzen Sie den Suchbereich von Define gene/Sonde-Identifikatoren auf Gene Symbol. Setzen Sie alle in TumorAuswahl. Wählen Sie den Knotenstatus und die in den Multivariate-Parameterngestreifte Klasse aus. Andere Gegenstände bleiben Standard. Die Anfrage einreichen und die Zahlen herunterladen.

4. Überlebensanalyse

  1. Überlebensanalyse in bc-GenExMiner v4.0
    1. Gehen Sie zur bc--GenExMiner v4.0 Webschnittstelle28.
    2. Wählen Sie PROGNOSTIC aus dem ANALYSIS-Menü , drücken Sie die EXHAUSTIVE-Button. Geben Sie ID1 in das Suchfeld ein und drücken Sie den Knopf Eingabe-und Startanalyseknopf.
    3. In der Exhaustiven Prognoseanalyse wählen Sie Nm, ERm, MR in den Populations-und Event-Kriterien aus und klicken Sie auf den Knopf "Einsenden", um weitere Informationen zu erhalten. Drücken Sie die Kaplan-Meier-Kurve Miniaturbilder, um die vollständigen Graphen zu exportieren.
      NOTE: N (+,-, m): Knotenstatus (+: Positiv,-: Negativ, m: gemischt); ER (+,-, m): Östrogenrezeptor-Status (+: Positiv,-: Negativ, m: gemischt); MR: Metastatischer Rückfall
  2. Überlebensanalyse in The Human Protein Atlas (HPA)
    1. Gehen Sie zur Human Protein Atlas Webschnittstelle29.
    2. Geben Sie ID1 in das Suchfeld ein und klicken Sie auf die Schaltfläche Suchen . Wählen Sie den Pathologie-Unteratlas .
      Hinweis: Die mRNA-Expressionswerte für die 17 Krebsarten werden im Abschnitt RNA-Expression angezeigt. Jedes Krebsgeweb-Label des Kastendiagramms ist klickbar, um auf eine detaillierte Seite zuzugreifen, die Überlebensanalysedaten und RNA-Expressionswerte liefert.
    3. Klicken Sie auf das Etikett von Brustkrebs, dann auf die detaillierte Seite, um interaktive Überlebensstreuung und Überlebensanalyse zu zeigen. Laden Sie die Zahlen herunter.
  3. Überlebensanalyse im Kaplan-Meier Plotter Survival
    1. Gehen Sie zur Kaplan-Meier Plotter Webschnittstelle30. Klicken Sie auf Start KM-Plotter für Brustkrebs in der mRNA-Genchip-Zone.
    2. Geben Sie ID1 in die Suchleiste ein und wählen Sie den grünen Eintrag im Kandidatenmenü.
    3. Wählen Sie RFS als Überlebenstyp und andere Gegenstände bleiben Standard. Klicken Sie auf Kaplan-Meier-Grundstück und laden Sie die Zahlen herunter.
      Hinweis: Einstellungen der Überlebenstypen, Abschnittsarten und Anschlussschwelle sowie Sondeneinstellmöglichkeiten können bei Bedarf geändert werden. Die prognostische Analyse der Untergruppen, einschließlich ER, PR, HER-2, Lymphknoten, Grade, Tp53-Status und molekularer Subtypen, kann über die Änderung der Einstellung in der Restrict-Analyse in die Untertypen-Box 1erreicht werden. Ebenso könnte die Filterbegrenzung der Behandlung in der Restrict-Analyse auf die Box ausgewählter Kohorten gesetzt werden.

Access restricted. Please log in or start a trial to view this content.

Ergebnisse

Ein repräsentatives Ergebnis des Data-Mining und der integrativen Analyse von Brustkrebsbiomarker wurde mit ID1 durchgeführt, einem der Inhibitoren von DNA-bindenden Familienmitgliedern, die in der vorherigen Studie 25 berichtet wurden.

Wie in Abbildung2 gezeigt, wurden die Unterschiede der ID1 mRNA-Expression zwischen Tumor und normalem Gewebe bei mehreren Krebsarten anhan...

Access restricted. Please log in or start a trial to view this content.

Diskussion

Eine umfassende Analyse öffentlicher Datenbanken kann die zugrunde liegende Funktion des Gens von Interesse aufzeigen und den möglichen Zusammenhang zwischen diesem Gen und klinikathologischen Parametern in bestimmten Krebsarten27,31aufzeigen. Die Erkundung und Analyse auf der Grundlage einer einzigen Datenbank könnte aufgrund der potenziellen Selektionsneigung oder in gewissem Maße, möglicherweise aufgrund der Vielfalt der Datenqualität, einschließlich de...

Access restricted. Please log in or start a trial to view this content.

Offenlegungen

Die Autoren haben nichts zu offenbaren

Danksagungen

Diese Arbeit wurde teilweise von der Natural Science Foundation der Provinz Guangdong, China (Nr. 2018A030313562), dem Lehrreformprojekt der Guangdong Clinical Teaching Base (NO.  2016JDB092), National Natural Science Foundation of China (81600358), und Youth Innovative Talent Project of Colleges and Universities in Guangdong Province, China (NO. 2017KQNCX073)

Access restricted. Please log in or start a trial to view this content.

Materialien

NameCompanyCatalog NumberComments
A personal computer or computing device with an Internet browser with Javascript
enabled
Microsoft051690762553We support and test the following browsers: Google Chrome, Firefox 3.0 and above, Safari, and Internet Explorer 9.0 and above
Adobe Flash playerAdobe Systems Inc.It can be freely downloaded from http://get.adobe.com/flashplayer/.This browser plug-in is required for visualizing networks on the network
analysis tab.
Chrome BroswerGoogle Inc.It can be freely downloaded from https://www.google.cn/chrome/This is necessary for viewing PDF files including the Pathology Reports and many of
the downloadable files.
Java Runtime EnvironmentOracle CorporationIt can be downloaded from http://www.java.com/getjava/.
Office 365 ProPlus for FacultyMicrosoft2003BFFD8117EA68This is necessary for viewing the Pathology Reports and for viewing many of
the downloadable files.
Vectr OnlineVectr Labs Inc.It can be freely used from https://vectr.com/newThis is necessary for visualizing and editing many of
the downloadable files and pictures.

Referenzen

  1. van 't Veer, L. J., et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 415 (6871), 530-536 (2002).
  2. Loi, S., et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. Journal of Clinical Oncology. 25 (10), 1239-1246 (2007).
  3. Cancer Genome Atlas, N. Comprehensive molecular portraits of human breast tumours. Nature. 490 (7418), 61-70 (2012).
  4. Emerson, J. W., Dolled-Filhart, M., Harris, L., Rimm, D. L., Tuck, D. P. Quantitative assessment of tissue biomarkers and construction of a model to predict outcome in breast cancer using multiple imputation. Cancer Informatics. 7, 29-40 (2009).
  5. Yu, H., et al. Integrative genomic and transcriptomic analysis for pinpointing recurrent alterations of plant homeodomain genes and their clinical significance in breast cancer. Oncotarget. 8 (8), 13099-13115 (2017).
  6. He, W., et al. TCGA datasetbased construction and integrated analysis of aberrantly expressed long noncoding RNA mediated competing endogenous RNA network in gastric cancer. Oncology Reports. , (2018).
  7. Liu, J., et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell. 173 (2), e411 400-416 (2018).
  8. Esgueva, R., et al. Next-generation prostate cancer biobanking: toward a processing protocol amenable for the International Cancer Genome Consortium. Diagnostic Molecular Pathology. 21 (2), 61-68 (2012).
  9. Joly, Y., Dove, E. S., Knoppers, B. M., Bobrow, M., Chalmers, D. Data sharing in the post-genomic world: the experience of the International Cancer Genome Consortium (ICGC) Data Access Compliance Office (DACO). PLoS Computational Biology. 8 (7), e1002549(2012).
  10. Zhang, J., et al. International Cancer Genome Consortium Data Portal--a one-stop shop for cancer genomics data. Database (Oxford). 2011, bar026 (2011).
  11. Rhodes, D. R., et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 6 (1), 1-6 (2004).
  12. Rhodes, D. R., et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 9 (2), 166-180 (2007).
  13. Jezequel, P., et al. bc-GenExMiner: an easy-to-use online platform for gene prognostic analyses in breast cancer. Breast Cancer Research and Treatment. 131 (3), 765-775 (2012).
  14. , Available from: http://co.bmc.lu.se/gobo/gsa.plb (2018).
  15. Ringner, M., Fredlund, E., Hakkinen, J., Borg, A., Staaf, J. GOBO: gene expression-based outcome for breast cancer online. PLoS One. 6 (3), e17911(2011).
  16. Ponten, F., Jirstrom, K., Uhlen, M. The Human Protein Atlas--a tool for pathology. Journal of Pathology. 216 (4), 387-393 (2008).
  17. Ponten, F., Schwenk, J. M., Asplund, A., Edqvist, P. H. The Human Protein Atlas as a proteomic resource for biomarker discovery. Journal of Internal Medicine. 270 (5), 428-446 (2011).
  18. Gyorffy, B., et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Research and Treatment. 123 (3), 725-731 (2010).
  19. Stevinson, C., Lawlor, D. A. Searching multiple databases for systematic reviews: added value or diminishing returns? Complementary Therapies in Medicine. 12 (4), 228-232 (2004).
  20. Yin, J., et al. Integrating multiple genome annotation databases improves the interpretation of microarray gene expression data. BMC Genomics. 11, 50(2010).
  21. Patel, D., Morton, D. J., Carey, J., Havrda, M. C., Chaudhary, J. Inhibitor of differentiation 4 (ID4): From development to cancer. Biochimica et Biophysica Acta. 1855 (1), 92-103 (2015).
  22. Kamalian, L., et al. Increased expression of Id family proteins in small cell lung cancer and its prognostic significance. Clinical Cancer Research. 14 (8), 2318-2325 (2008).
  23. Cruz-Rodriguez, N., et al. High expression of ID family and IGJ genes signature as predictor of low induction treatment response and worst survival in adult Hispanic patients with B-acute lymphoblastic leukemia. Journal of Experimental and Clinical Cancer Research. 35, 64(2016).
  24. Yang, H. Y., et al. Expression and prognostic value of Id protein family in human breast carcinoma. Oncology Reports. 23 (2), 321-328 (2010).
  25. Zhou, X. L., et al. Prognostic values of the inhibitor of DNAbinding family members in breast cancer. Oncology Reports. 40 (4), 1897-1906 (2018).
  26. , Available from: https://www.oncomine.org (2018).
  27. Lin, H. Y., Zeng, L., iang, Y. K., Wei, X. L., Chen, C. F. GATA3 and TRPS1 are distinct biomarkers and prognostic factors in breast cancer: database mining for GATA family members in malignancies. Oncotarget. 8 (21), 34750-34761 (2017).
  28. , Available from: http://bcgenex.centregauducheau.fr/BCGEM/GEM-requete.php (2018).
  29. , Available from: https://www.proteinatlas.org (2018).
  30. , Available from: http://kmplot.com/analysis (2018).
  31. Zhu, Y. F., Dong, M. Expression of TUSC3 and its prognostic significance in colorectal cancer. Pathology-Research and Practice. 214 (9), 1497-1503 (2018).
  32. Nelson, J. C., et al. Validation sampling can reduce bias in health care database studies: an illustration using influenza vaccination effectiveness. Journal of Clinical Epidemiology. 66 (8 Suppl), S110-S121 (2013).
  33. Haibe-Kains, B., Desmedt, C., Sotiriou, C., Bontempi, G. A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all? Bioinformatics. 24 (19), 2200-2208 (2008).
  34. Yang, C., et al. Understanding genetic toxicity through data mining: the process of building knowledge by integrating multiple genetic toxicity databases. Toxicology Mechanisms and Methods. 18 (2-3), 277-295 (2008).
  35. Cannata, N., Merelli, E., Altman, R. B. Time to organize the bioinformatics resourceome. PLoS Computational Biology. 1 (7), e76(2005).
  36. Wren, J. D., Bateman, A. Databases, data tombs and dust in the wind. Bioinformatics. 24 (19), 2127-2128 (2008).

Access restricted. Please log in or start a trial to view this content.

Nachdrucke und Genehmigungen

Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

Genehmigung beantragen

Weitere Artikel entdecken

KrebsforschungAusgabe 147BrustkrebsBiomarkerDatenbankData MiningPrognoseBioinformation

This article has been published

Video Coming Soon

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten