Installing and Configuring the CBLE Performance Estimation Graphical User Interface
1:33
Data Splitting, Model Training, and Accuracy Evaluation for BrainInvaders Dataset
3:05
Data Splitting and Model Training for BCI2000 Dataset
4:28
Results I: Analysis of BrainInvaders Dataset Using vCBLE as a Predictor of BCI Accuracy
5:07
Results II: Analysis of Michigan Dataset Using vCBLE as a Predictor of BCI Accuracy
5:43
Conclusion
Transkript
Measuring performance is crucial for any research or clinical application involving brain computer interfaces. CBLE helps evaluate the effectiveness of a system for any particular user. CBLE can be used to predict the user's P300 Speller accuracy
Melden Sie sich an oder starten Sie Ihre kostenlose Testversion, um auf diese Inhalt zuzugreifen
This article presents a method for estimating same-day P300 speller Brain-Computer Interface (BCI) accuracy using a small testing dataset.