JoVE Logo
Faculty Resource Center

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Bioengineering

Fabrication of Antibacterial Graphene Oxide/Copper Nanocomposites

Published: October 4th, 2024

DOI:

10.3791/66762

1School of Integrative Engineering, Chung-Ang University, 2Feynman Institute of Technology, Nanomedicine Corporation, 3Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4Department of Chemical Engineering, Kumoh National Institute of Technology

Abstract

Antibiotics are currently the most used antibacterial treatment for killing bacteria. However, bacteria develop resistance when continually overexposed to antibiotics. Developing antimicrobial agents that can replace existing antibiotics is essential because antibiotic-resistant bacteria have resistance mechanisms for all current antibiotics and can promote nosocomial infections. To address this challenge, in this study, we propose graphene oxide/copper (GO/Cu) nanocomposites as antibacterial materials that can replace the existing antibiotics. GO/Cu nanocomposites are characterized by transmission electron microscopy and scanning electron microscopy. They show that copper (Cu) nanoparticles are well-grown on the graphene oxide sheets. Additionally, a microdilution broth method is used to confirm the efficacy of the antimicrobial substance against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (P. aeruginosa), which are frequently implicated in nosocomial infections. Specifically, 99.8% of MRSA and 84.7% of P. aeruginosa are eliminated by 500 µg/mL of GO/Cu nanocomposites. Metal nanocomposites can eradicate antibiotic-resistant bacteria by releasing ions, forming reactive oxygen species, and physically damaging the bacteria. This study demonstrates the potential of antibacterial GO/Cu nanocomposites in eradicating antibiotic-resistant bacteria.

Explore More Videos

Antibacterial

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved