All
Research
Education
Business
Solutions
EN
EN - English
CN - 中文
DE - Deutsch
ES - Español
KR - 한국어
IT - Italiano
FR - Français
PT - Português
TR - Türkçe
JA - 日本語
PL - Polski
RU - Русский
HE - עִברִית
AR - العربية
Sign In
Chapter 16
A Fourier series is a mathematical technique that breaks down periodic functions into an infinite series of sinusoidal harmonics. The trigonometric ...
In audio signal processing, the exponential Fourier series is essential for synthesizing sounds. For instance, a complex musical note can be decomposed ...
The exploration of the properties of the Fourier series begins with linearity. When considering two periodic signals and forming a third by their linear ...
When a signal undergoes time scaling, the Fourier series coefficients remain the same, but the representation of the Fourier series changes due to an ...
Parseval's theorem states that if a function is periodic, then the average power of the signal over one period equals the sum of the squared ...
The Fourier series of a signal is an infinite sum of complex exponentials. The infinite sum is often truncated to a finite partial sum to make it ...
The Discrete-Time Fourier Series is a counterpart to the Fourier-series expansion of continuous-time periodic signals. Calculating the expansion ...
Privacy
Terms of Use
Policies
Contact Us
Recommend to library
JoVE NEWSLETTERS
JoVE Journal
Methods Collections
JoVE Encyclopedia of Experiments
Archive
JoVE Core
JoVE Science Education
JoVE Lab Manual
JoVE Quiz
JoVE Playlist
Authors
Librarians
Access
ABOUT JoVE
JoVE Sitemap
Copyright © 2025 MyJoVE Corporation. All rights reserved