Iniciar sesión

Royal North Shore Hospital

3 ARTICLES PUBLISHED IN JoVE

image

Bioengineering

Layered Alginate Constructs: A Platform for Co-culture of Heterogeneous Cell Populations
Poonam Sharma 1, Julianne D. Twomey 1, Michelle Patkin 1, Adam H. Hsieh 1
1Fischell Department of Bioengineering, University of Maryland

Engineering and analysis of load bearing tissues with heterogeneous cell populations are still a challenge. Here, we describe a method for creating bi-layered alginate hydrogel discs as a platform for co-culture of diverse cell populations within one construct.

image

Bioengineering

Transplantation of a 3D Bioprinted Patch in a Murine Model of Myocardial Infarction
Christopher D. Roche 1,2,3,4, Carmine Gentile 1,2,3
1The University of Sydney, 2University of Technology Sydney (UTS), 3The Royal North Shore Hospital, 4University Hospital of Wales

This protocol aims to transplant a 3D bioprinted patch onto the epicardium of infarcted mice modeling heart failure. It includes details regarding anesthesia, the surgical chest opening, permanent ligation of the left anterior descending (LAD) coronary artery and application of a bioprinted patch onto the infarcted area of the heart.

image

Bioengineering

Cardiac Spheroids as in vitro Bioengineered Heart Tissues to Study Human Heart Pathophysiology
Poonam Sharma 1,2,3,4, Carmine Gentile 2,3,4
1University of Newcastle, 2University of Sydney, 3Kolling Institute of Medical Research, Royal North Shore Hospital, 4University of Technology, Sydney

This protocol aims to fabricate 3D cardiac spheroids (CSs) by co-culturing cells in hanging drops. Collagen-embedded CSs are treated with doxorubicin (DOX, a cardiotoxic agent) at physiological concentrations to model heart failure. In vitro testing using DOX-treated CSs may be used to identify novel therapies for heart failure patients.

Utilizamos cookies para mejorar su experiencia en nuestra página web.

Al continuar usando nuestro sitio web o al hacer clic en 'Continuar', está aceptando nuestras cookies.

Saber más