This protocol demonstrates how to dissect Drosophila larvae in preparation for immunohistochemistry and/or imaging of the neuromuscular junction.
This protocol demonstrates how to perform immunohistochemistry on dissected Drosophila larva.
Here we describe electrophysiological methods for measuring synaptic transmission at the neuromuscular junction of Drosophila larva. Evoked release is initiated artificially by stimulating the motor neuron axons, and transmission through the NMJ can be measured by the postsynaptic response evoked in the muscle.
Here we present two techniques for manipulating gene expression in murine retinal ganglion cells (RGCs) by in utero and ex vivo electroporation. These techniques enable one to examine how alterations in gene expression affect RGC development, axon guidance, and functional properties.
An efficient system of structure and function analysis of a gene in an ex vivo culture of splenic B-lymphocytes is described. This method takes advantage of recombinant retroviral production in a helper free, ecotrophic packaging cell line. Stable, heritable expression of a gene of interest within primary lymphocytes is achieved leading to generation of surface antibodies on B cells undergoing class switch recombination.
The dissection technique illustrates evisceration of the vitreous, retina, and lens from the mouse eye, separation by centrifugation, and characterization with protein assays.
The dissection technique illustrates enucleation of the mouse eye for tissue fixation to perform phenotyping in high-throughput screens.
This surgical technique illustrates the injection of gene therapy vectors and stem cells into the subretinal space of the mouse eye.
The chick chorioallantoic membrane (CAM) is immunodeficient and highly vascularized, making it a natural in vivo model of tumor growth and angiogenesis. In this protocol, we describe a reliable method of growing three-dimensional, vascularized hepatocellular carcinoma (HCC) tumors using the CAM assay.
The human retina is composed of functionally and molecularly distinct regions, including the fovea, macula, and peripheral retina. Here, we describe a method using punch biopsies and manual removal of tissue layers from a human eye to dissect and collect these distinct retinal regions for downstream proteomic analysis.
This protocol describes techniques for evaluating chemical cross-linking of the rabbit sclera using second harmonic generation imaging and differential scanning calorimetry.
Here, we present two novel methodologies, psPACT and mPACT, for achieving maximal optical transparency and subsequent microscopic analysis of tissue vasculature in the intact rodent whole CNS.
ACERCA DE JoVE
Copyright © 2024 MyJoVE Corporation. Todos los derechos reservados