JoVE Logo

Iniciar sesión

9.18 : Propulsión de un cohete en un campo gravitatorio - I

Rockets range in size from small fireworks that ordinary people use to the enormous Saturn V that once propelled massive payloads toward the Moon. The propulsion of all rockets, jet engines, deflating balloons, and even squids and octopuses are explained by the same physical principle: Newton's third law of motion. The matter is forcefully ejected from a system, producing an equal and opposite reaction on what remains.

The motion of a rocket in space changes its velocity (and hence its momentum) by ejecting burned fuel gases, causing it to accelerate in the opposite direction of the velocity of the ejected fuel. Due to conservation of momentum, the rocket's momentum changes by the same amount (with the opposite sign) as the ejected gases. However, in the presence of a gravitational field, the momentum of the entire system decreases by the gravitational force acting on the rocket for a small time interval, producing a negative impulse. Remember that impulse is the net external force on a system multiplied by the time interval, and it equals the change in momentum of the system. Using the principle of momentum conservation, the velocity of a rocket moving under gravitational force at any given instant can be calculated using the ideal rocket equation.

This text is adapted from Openstax, College Physics, Section 8.7: Introduction to Rocket Propulsion and Openstax, University Physics Volume 1, Section 9.7: Rocket Propulsion.

Tags

Rocket PropulsionNewton s Third LawMomentum ConservationGravitational FieldRocket EquationImpulseVelocityFuel EjectionAccelerationSpace Motion

Del capítulo 9:

article

Now Playing

9.18 : Propulsión de un cohete en un campo gravitatorio - I

Momento lineal, impulso y colisiones

2.7K Vistas

article

9.1 : Momento lineal

Momento lineal, impulso y colisiones

13.7K Vistas

article

9.2 : Fuerza y momento

Momento lineal, impulso y colisiones

15.2K Vistas

article

9.3 : Impulso

Momento lineal, impulso y colisiones

18.3K Vistas

article

9.4 : Teorema impulso-momento

Momento lineal, impulso y colisiones

11.0K Vistas

article

9.5 : Conservación de la cantidad de movimiento: introducción

Momento lineal, impulso y colisiones

14.4K Vistas

article

9.6 : Conservación de la cantidad de movimiento: Resolución de problemas

Momento lineal, impulso y colisiones

9.8K Vistas

article

9.7 : Tipos de colisión - I

Momento lineal, impulso y colisiones

6.6K Vistas

article

9.8 : Tipos de colisión - II

Momento lineal, impulso y colisiones

7.1K Vistas

article

9.9 : Colisiones elásticas: introducción

Momento lineal, impulso y colisiones

12.1K Vistas

article

9.10 : Colisiones elásticas: caso práctico

Momento lineal, impulso y colisiones

13.3K Vistas

article

9.11 : Colisiones en dimensiones múltiples: introducción

Momento lineal, impulso y colisiones

4.7K Vistas

article

9.12 : Colisiones en dimensiones múltiples: resolución de problemas

Momento lineal, impulso y colisiones

3.5K Vistas

article

9.13 : Centro de masa: introducción

Momento lineal, impulso y colisiones

13.9K Vistas

article

9.14 : Significado del Centro de Masa

Momento lineal, impulso y colisiones

6.2K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados