JoVE Logo

Войдите в систему

Rockets range in size from small fireworks that ordinary people use to the enormous Saturn V that once propelled massive payloads toward the Moon. The propulsion of all rockets, jet engines, deflating balloons, and even squids and octopuses are explained by the same physical principle: Newton's third law of motion. The matter is forcefully ejected from a system, producing an equal and opposite reaction on what remains.

The motion of a rocket in space changes its velocity (and hence its momentum) by ejecting burned fuel gases, causing it to accelerate in the opposite direction of the velocity of the ejected fuel. Due to conservation of momentum, the rocket's momentum changes by the same amount (with the opposite sign) as the ejected gases. However, in the presence of a gravitational field, the momentum of the entire system decreases by the gravitational force acting on the rocket for a small time interval, producing a negative impulse. Remember that impulse is the net external force on a system multiplied by the time interval, and it equals the change in momentum of the system. Using the principle of momentum conservation, the velocity of a rocket moving under gravitational force at any given instant can be calculated using the ideal rocket equation.

This text is adapted from Openstax, College Physics, Section 8.7: Introduction to Rocket Propulsion and Openstax, University Physics Volume 1, Section 9.7: Rocket Propulsion.

Теги

Rocket PropulsionNewton s Third LawMomentum ConservationGravitational FieldRocket EquationImpulseVelocityFuel EjectionAccelerationSpace Motion

Из главы 9:

article

Now Playing

9.18 : Rocket Propulsion in Gravitational Field - I

Linear Momentum, Impulse and Collisions

2.7K Просмотры

article

9.1 : Линейный импульс

Linear Momentum, Impulse and Collisions

13.6K Просмотры

article

9.2 : Сила и импульс

Linear Momentum, Impulse and Collisions

14.6K Просмотры

article

9.3 : Импульс

Linear Momentum, Impulse and Collisions

17.6K Просмотры

article

9.4 : Теорема импульс-импульс

Linear Momentum, Impulse and Collisions

10.9K Просмотры

article

9.5 : Сохранение импульса: введение

Linear Momentum, Impulse and Collisions

14.3K Просмотры

article

9.6 : Сохранение импульса: решение проблем

Linear Momentum, Impulse and Collisions

9.7K Просмотры

article

9.7 : Типы столкновений - I

Linear Momentum, Impulse and Collisions

6.5K Просмотры

article

9.8 : Типы столкновений - II

Linear Momentum, Impulse and Collisions

6.7K Просмотры

article

9.9 : Упругие столкновения: введение

Linear Momentum, Impulse and Collisions

11.5K Просмотры

article

9.10 : Упругие столкновения: тематическое исследование

Linear Momentum, Impulse and Collisions

12.4K Просмотры

article

9.11 : Коллизии в нескольких измерениях: введение

Linear Momentum, Impulse and Collisions

4.4K Просмотры

article

9.12 : Многомерные столкновения: решение проблем

Linear Momentum, Impulse and Collisions

3.5K Просмотры

article

9.13 : Центр масс: введение

Linear Momentum, Impulse and Collisions

13.2K Просмотры

article

9.14 : Значение центра масс

Linear Momentum, Impulse and Collisions

6.1K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены