JoVE Logo

Zaloguj się

Rockets range in size from small fireworks that ordinary people use to the enormous Saturn V that once propelled massive payloads toward the Moon. The propulsion of all rockets, jet engines, deflating balloons, and even squids and octopuses are explained by the same physical principle: Newton's third law of motion. The matter is forcefully ejected from a system, producing an equal and opposite reaction on what remains.

The motion of a rocket in space changes its velocity (and hence its momentum) by ejecting burned fuel gases, causing it to accelerate in the opposite direction of the velocity of the ejected fuel. Due to conservation of momentum, the rocket's momentum changes by the same amount (with the opposite sign) as the ejected gases. However, in the presence of a gravitational field, the momentum of the entire system decreases by the gravitational force acting on the rocket for a small time interval, producing a negative impulse. Remember that impulse is the net external force on a system multiplied by the time interval, and it equals the change in momentum of the system. Using the principle of momentum conservation, the velocity of a rocket moving under gravitational force at any given instant can be calculated using the ideal rocket equation.

This text is adapted from Openstax, College Physics, Section 8.7: Introduction to Rocket Propulsion and Openstax, University Physics Volume 1, Section 9.7: Rocket Propulsion.

Tagi

Rocket PropulsionNewton s Third LawMomentum ConservationGravitational FieldRocket EquationImpulseVelocityFuel EjectionAccelerationSpace Motion

Z rozdziału 9:

article

Now Playing

9.18 : Rocket Propulsion in Gravitational Field - I

Linear Momentum, Impulse and Collisions

2.7K Wyświetleń

article

9.1 : Pęd liniowy

Linear Momentum, Impulse and Collisions

13.5K Wyświetleń

article

9.2 : Siła i pęd

Linear Momentum, Impulse and Collisions

14.5K Wyświetleń

article

9.3 : Impuls

Linear Momentum, Impulse and Collisions

17.5K Wyświetleń

article

9.4 : Twierdzenie o impulsie i pędzie

Linear Momentum, Impulse and Collisions

10.9K Wyświetleń

article

9.5 : Zasada zachowania pędu: Wprowadzenie

Linear Momentum, Impulse and Collisions

14.3K Wyświetleń

article

9.6 : Zasada zachowania pędu: rozwiązywanie problemów

Linear Momentum, Impulse and Collisions

9.6K Wyświetleń

article

9.7 : Rodzaje kolizji - I

Linear Momentum, Impulse and Collisions

6.5K Wyświetleń

article

9.8 : Rodzaje kolizji - II

Linear Momentum, Impulse and Collisions

6.7K Wyświetleń

article

9.9 : Zderzenia sprężyste: Wprowadzenie

Linear Momentum, Impulse and Collisions

11.4K Wyświetleń

article

9.10 : Zderzenia sprężyste: studium przypadku

Linear Momentum, Impulse and Collisions

12.3K Wyświetleń

article

9.11 : Kolizje w wielu wymiarach: Wprowadzenie

Linear Momentum, Impulse and Collisions

4.4K Wyświetleń

article

9.12 : Kolizje w wielu wymiarach: rozwiązywanie problemów

Linear Momentum, Impulse and Collisions

3.5K Wyświetleń

article

9.13 : Środek masy: Wprowadzenie

Linear Momentum, Impulse and Collisions

13.1K Wyświetleń

article

9.14 : Znaczenie środka masy

Linear Momentum, Impulse and Collisions

6.1K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone