Iniciar sesión

Introduction

Analogous to alkenes, alkynes also undergo acid-catalyzed hydration. While the addition of water to an alkene gives an alcohol, hydration of alkynes produces different products such as aldehydes and ketones.

Figure1

Since the rate of acid-catalyzed hydration of alkynes is much slower than alkenes, a mercuric salt like mercuric sulfate (HgSO4) is usually added to facilitate the reaction. Hydration of terminal alkynes follows Markovnikov's rule; however, for internal alkynes, the addition of water is non-regioselective.

Mechanism

The mechanism begins with a nucleophilic attack by the alkyne π bond on the Hg2+ ion resulting in the formation of a cyclic mercurinium ion intermediate. A second nucleophilic attack by water on the more substituted carbon forms an organomercuric enol that rapidly converts into a stable keto form via keto-enol tautomerism. Protonation of the keto intermediate followed by the loss of an Hg2+ ion yields the enol form of the product. The final step proceeds with the tautomerization of the enol to the desired ketone.

Figure2

Keto-Enol Tautomerism

Unlike alkenes, acid-catalyzed hydration of alkynes is irreversible. This is because the enol intermediate formed during the hydration of alkynes is unstable and rapidly isomerizes to a more stable keto form. The chemical equilibrium that exists between the two forms is referred to as keto-enol tautomerism. Since the C=O bond is considerably stronger than the C=C bond, the equilibrium favors the keto isomer. Keto-enol tautomerism is characterized by the migration of a proton and the change in the location of a double bond.

Acid-catalyzed tautomerization is a two-step process:

Step 1: Addition of proton across the enol double bond

Figure3

Step 2: Loss of a proton to yield the keto form

Figure4

Example

Acid-catalyzed hydration of 1-propyne initially forms the less stable enol isomer, propen-2-ol, which tautomerizes into a more stable keto product, propan-2-one.

Figure5

Hydration of Terminal And Internal Alkynes

Acid-catalyzed hydration is most useful for terminal and symmetrical internal alkynes because they form only one final product. In contrast, unsymmetrical internal alkynes yield a mixture of products that need to be separated. This lowers the overall yield and makes the process less efficient.

Tags
AlkynesAldehydesKetonesAcid catalyzed HydrationMercuric SaltMarkovnikov s RuleNucleophilic AttackMercurinium Ion IntermediateOrganomercuric EnolKeto enol TautomerismIrreversible ReactionEnol IntermediateKeto FormChemical Equilibrium

Del capítulo 9:

article

Now Playing

9.8 : Alkynes to Aldehydes and Ketones: Acid-Catalyzed Hydration

Alquinos

8.0K Vistas

article

9.1 : Estructura y propiedades físicas de los alquinos

Alquinos

9.6K Vistas

article

9.2 : Nomenclatura de los alquinos

Alquinos

17.1K Vistas

article

9.3 : Acidez de los 1-alquinos

Alquinos

9.2K Vistas

article

9.4 : Preparación de alquinos: Reacción de alquilación

Alquinos

9.4K Vistas

article

9.5 : Prepararación de alquinos: Deshidrohalogenación

Alquinos

15.3K Vistas

article

9.6 : Adición electrofílica a alquinos: Halogenación

Alquinos

8.0K Vistas

article

9.7 : Adición electrofílica a alquinos: Hidrohalogenación

Alquinos

9.7K Vistas

article

9.9 : Alquinos a Aldehídos y Cetonas: Hidroboración-Oxidación

Alquinos

17.5K Vistas

article

9.10 : Alquinos a Ácidos carboxílicos: Escisión oxidativa

Alquinos

4.6K Vistas

article

9.11 : Reducción de Alquinos a cis-alquenos: Hidrogenación catalítica

Alquinos

7.5K Vistas

article

9.12 : Reducción de alquinos a trans-alquenos: Sodio en amonio líquido

Alquinos

8.9K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados