Entrar

Introduction

Analogous to alkenes, alkynes also undergo acid-catalyzed hydration. While the addition of water to an alkene gives an alcohol, hydration of alkynes produces different products such as aldehydes and ketones.

Figure1

Since the rate of acid-catalyzed hydration of alkynes is much slower than alkenes, a mercuric salt like mercuric sulfate (HgSO4) is usually added to facilitate the reaction. Hydration of terminal alkynes follows Markovnikov's rule; however, for internal alkynes, the addition of water is non-regioselective.

Mechanism

The mechanism begins with a nucleophilic attack by the alkyne π bond on the Hg2+ ion resulting in the formation of a cyclic mercurinium ion intermediate. A second nucleophilic attack by water on the more substituted carbon forms an organomercuric enol that rapidly converts into a stable keto form via keto-enol tautomerism. Protonation of the keto intermediate followed by the loss of an Hg2+ ion yields the enol form of the product. The final step proceeds with the tautomerization of the enol to the desired ketone.

Figure2

Keto-Enol Tautomerism

Unlike alkenes, acid-catalyzed hydration of alkynes is irreversible. This is because the enol intermediate formed during the hydration of alkynes is unstable and rapidly isomerizes to a more stable keto form. The chemical equilibrium that exists between the two forms is referred to as keto-enol tautomerism. Since the C=O bond is considerably stronger than the C=C bond, the equilibrium favors the keto isomer. Keto-enol tautomerism is characterized by the migration of a proton and the change in the location of a double bond.

Acid-catalyzed tautomerization is a two-step process:

Step 1: Addition of proton across the enol double bond

Figure3

Step 2: Loss of a proton to yield the keto form

Figure4

Example

Acid-catalyzed hydration of 1-propyne initially forms the less stable enol isomer, propen-2-ol, which tautomerizes into a more stable keto product, propan-2-one.

Figure5

Hydration of Terminal And Internal Alkynes

Acid-catalyzed hydration is most useful for terminal and symmetrical internal alkynes because they form only one final product. In contrast, unsymmetrical internal alkynes yield a mixture of products that need to be separated. This lowers the overall yield and makes the process less efficient.

Tags

AlkynesAldehydesKetonesAcid catalyzed HydrationMercuric SaltMarkovnikov s RuleNucleophilic AttackMercurinium Ion IntermediateOrganomercuric EnolKeto enol TautomerismIrreversible ReactionEnol IntermediateKeto FormChemical Equilibrium

Do Capítulo 9:

article

Now Playing

9.8 : Alquinos a Aldeídos e Cetonas: Hidratação Catalisada por Ácido

Alquinos

8.0K Visualizações

article

9.1 : Estrutura e Propriedades Físicas de Alquinos

Alquinos

9.6K Visualizações

article

9.2 : Nomenclatura dos Alquinos

Alquinos

17.2K Visualizações

article

9.3 : Acidez de 1-Alquinos

Alquinos

9.2K Visualizações

article

9.4 : Preparação de Alquinos: Reação de Alquilação

Alquinos

9.4K Visualizações

article

9.5 : Preparação de Alquinos: Desidrohalogenação

Alquinos

15.3K Visualizações

article

9.6 : Adição Eletrofílica a Alquinos: Halogenação

Alquinos

8.0K Visualizações

article

9.7 : Adição Eletrofílica a Alquinos: Hidrohalogenação

Alquinos

9.7K Visualizações

article

9.9 : Alquinos a Aldeídos e Cetonas: Hidroboração-Oxidação

Alquinos

17.5K Visualizações

article

9.10 : Alquinos a Ácidos Carboxílicos: Clivagem Oxidativa

Alquinos

4.7K Visualizações

article

9.11 : Redução de Alquinos a Cis-Alquenos: Hidrogenação Catalítica

Alquinos

7.5K Visualizações

article

9.12 : Redução de Alquinos a trans-Alquenos: Sódio em Amônia Líquida

Alquinos

8.9K Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados