Iniciar sesión

Neurons communicate at synapses, or junctions, to excite or inhibit the activity of other neurons or target cells, such as muscles. Synapses may be chemical or electrical.

Most synapses are chemical, meaning an electrical impulse or action potential spurs the release of chemical messengers called neurotransmitters. The neuron sending the signal is called the presynaptic neuron, and the neuron receiving the signal is the postsynaptic neuron.

The presynaptic neuron fires an action potential that travels through its axon. The end of the axon, or the axon terminal, contains neurotransmitter-filled vesicles. The action potential opens voltage-gated calcium ion channels in the axon terminal membrane. Ca2+ rapidly enters the presynaptic cell (due to the higher external Ca2+ concentration), enabling the vesicles to fuse with the terminal membrane and release neurotransmitters.

The space between presynaptic and postsynaptic cells is called the synaptic cleft. Neurotransmitters released from the presynaptic cell rapidly populate the synaptic cleft and bind to receptors on the postsynaptic neuron. The binding of neurotransmitters instigates chemical changes in the postsynaptic neuron, such as opening or closing of ion channels. This, in turn, alters the membrane potential of the postsynaptic cell, enabling it to fire an action potential.

To end the synaptic signaling, neurotransmitters in the synapse are degraded by enzymes, reabsorbed by the presynaptic cell, diffused away, or cleared by glial cells.

Electrical synapses are present in the nervous system of both invertebrates and vertebrates. They are narrower than their chemical counterparts and transfer ions directly between neurons, allowing faster signal transmission. However, unlike chemical synapses, electrical synapses cannot amplify or transform presynaptic signals. Electrical synapses synchronize neuronal activity, which is favorable for controlling rapid, invariable signals, such as the danger escape in squids.

Neurons can send signals to, and receive them from, many other neurons. The integration of numerous inputs received by postsynaptic cells ultimately determines their action potential firing patterns.

Tags
Synaptic SignalingSynapseNeuronsTarget CellsChemical SynapsesElectrical SynapsesNeurotransmittersPresynaptic NeuronPostsynaptic NeuronAction PotentialAxon TerminalVesiclesCalcium Ion ChannelsSynaptic CleftReceptorsIon ChannelsMembrane PotentialEnzymatic Degradation

Del capítulo 18:

article

Now Playing

18.17 : Señalización sináptica

Endocitosis y exocitosis

5.3K Vistas

article

18.1 : Endocitosis

Endocitosis y exocitosis

8.1K Vistas

article

18.2 : Fagocitosis

Endocitosis y exocitosis

5.7K Vistas

article

18.3 : Pinocitosis

Endocitosis y exocitosis

3.1K Vistas

article

18.4 : Endocitosis mediada por receptor

Endocitosis y exocitosis

5.7K Vistas

article

18.5 : El endosoma temprano: endocitosis de transferrina

Endocitosis y exocitosis

3.2K Vistas

article

18.6 : Maduración de endosomas

Endocitosis y exocitosis

4.0K Vistas

article

18.7 : Vesículas intraluminales y cuerpos multivesiculares

Endocitosis y exocitosis

3.2K Vistas

article

18.8 : Regulación negativa de receptores en MVBs

Endocitosis y exocitosis

2.0K Vistas

article

18.9 : Visión general sobre los exosomas

Endocitosis y exocitosis

2.6K Vistas

article

18.10 : Endosomas de reciclaje y transcitosis

Endocitosis y exocitosis

2.5K Vistas

article

18.11 : Transcitosis de IgG

Endocitosis y exocitosis

2.6K Vistas

article

18.12 : Exocitosis

Endocitosis y exocitosis

6.1K Vistas

article

18.13 : Visión general de las vesículas de secreción

Endocitosis y exocitosis

6.0K Vistas

article

18.14 : Vesículas secretoras de insulina

Endocitosis y exocitosis

4.7K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados