로그인

Neurons communicate at synapses, or junctions, to excite or inhibit the activity of other neurons or target cells, such as muscles. Synapses may be chemical or electrical.

Most synapses are chemical, meaning an electrical impulse or action potential spurs the release of chemical messengers called neurotransmitters. The neuron sending the signal is called the presynaptic neuron, and the neuron receiving the signal is the postsynaptic neuron.

The presynaptic neuron fires an action potential that travels through its axon. The end of the axon, or the axon terminal, contains neurotransmitter-filled vesicles. The action potential opens voltage-gated calcium ion channels in the axon terminal membrane. Ca2+ rapidly enters the presynaptic cell (due to the higher external Ca2+ concentration), enabling the vesicles to fuse with the terminal membrane and release neurotransmitters.

The space between presynaptic and postsynaptic cells is called the synaptic cleft. Neurotransmitters released from the presynaptic cell rapidly populate the synaptic cleft and bind to receptors on the postsynaptic neuron. The binding of neurotransmitters instigates chemical changes in the postsynaptic neuron, such as opening or closing of ion channels. This, in turn, alters the membrane potential of the postsynaptic cell, enabling it to fire an action potential.

To end the synaptic signaling, neurotransmitters in the synapse are degraded by enzymes, reabsorbed by the presynaptic cell, diffused away, or cleared by glial cells.

Electrical synapses are present in the nervous system of both invertebrates and vertebrates. They are narrower than their chemical counterparts and transfer ions directly between neurons, allowing faster signal transmission. However, unlike chemical synapses, electrical synapses cannot amplify or transform presynaptic signals. Electrical synapses synchronize neuronal activity, which is favorable for controlling rapid, invariable signals, such as the danger escape in squids.

Neurons can send signals to, and receive them from, many other neurons. The integration of numerous inputs received by postsynaptic cells ultimately determines their action potential firing patterns.

Tags
Synaptic SignalingSynapseNeuronsTarget CellsChemical SynapsesElectrical SynapsesNeurotransmittersPresynaptic NeuronPostsynaptic NeuronAction PotentialAxon TerminalVesiclesCalcium Ion ChannelsSynaptic CleftReceptorsIon ChannelsMembrane PotentialEnzymatic Degradation

장에서 18:

article

Now Playing

18.17 : Synaptic Signaling

Endocytosis and Exocytosis

5.3K Views

article

18.1 : 세포내이입

Endocytosis and Exocytosis

8.1K Views

article

18.2 : 식세포작용(Phagocytosis)

Endocytosis and Exocytosis

5.7K Views

article

18.3 : 피노사이토시스(Pinocytosis)

Endocytosis and Exocytosis

3.1K Views

article

18.4 : 수용체 매개 세포내이입(Receptor-mediated Endocytosis)

Endocytosis and Exocytosis

5.7K Views

article

18.5 : 초기 엔도솜: 트랜스페린의 세포내이입

Endocytosis and Exocytosis

3.2K Views

article

18.6 : 엔도솜의 성숙

Endocytosis and Exocytosis

4.0K Views

article

18.7 : Intralumenal Vesicles and Multivesicular Bodies

Endocytosis and Exocytosis

3.2K Views

article

18.8 : MVB의 수용체 하향 조절

Endocytosis and Exocytosis

2.0K Views

article

18.9 : 엑소좀(Exosomes) 개요

Endocytosis and Exocytosis

2.6K Views

article

18.10 : 엔도솜 및 트랜스사이토시스 재활용

Endocytosis and Exocytosis

2.5K Views

article

18.11 : IgG의 경세포작용(Transcytosis)

Endocytosis and Exocytosis

2.6K Views

article

18.12 : 엑소사이토시스(Exocytosis)

Endocytosis and Exocytosis

6.1K Views

article

18.13 : Secretory Vesicles 개요

Endocytosis and Exocytosis

6.0K Views

article

18.14 : 인슐린 분비 소포

Endocytosis and Exocytosis

4.7K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유