Iniciar sesión

An elastic collision is one that conserves both internal kinetic energy and momentum. Internal kinetic energy is the sum of the kinetic energies of the objects in a system. Truly elastic collisions can only be achieved with subatomic particles, such as electrons striking nuclei. Macroscopic collisions can be very nearly, but not quite, elastic, as some kinetic energy is always converted into other forms of energy such as heat transfer due to friction and sound. An example of a nearly macroscopic collision is that of two steel blocks on ice. Another nearly elastic collision is between two carts with spring bumpers on an air track. Icy surfaces and air tracks are nearly frictionless, more readily allowing nearly elastic collisions on them.

To solve problems involving one-dimensional elastic collisions between two objects, we can use the equations for conservation of momentum and conservation of internal kinetic energy. Firstly, the equation for conservation of momentum for two objects in a one-dimensional collision implies that the momentum of the system before and after the collision is equal. Secondly, an elastic collision conserves internal kinetic energy, and so the sum of kinetic energies before the collision equals the sum after the collision.

This text is adapted from Openstax, University Physics Volume 1, Section 9.4: Types of Collisions.

Tags
Elastic CollisionsConservation Of MomentumConservation Of Kinetic EnergySubatomic ParticlesMacroscopic CollisionsSteel BlocksAir TrackFrictionless SurfacesOne Dimensional CollisionMomentum ConservationKinetic Energy Conservation

Del capítulo 9:

article

Now Playing

9.9 : Colisiones elásticas: introducción

Momento lineal, impulso y colisiones

8.5K Vistas

article

9.1 : Momento lineal

Momento lineal, impulso y colisiones

13.0K Vistas

article

9.2 : Fuerza y momento

Momento lineal, impulso y colisiones

11.4K Vistas

article

9.3 : Impulso

Momento lineal, impulso y colisiones

14.4K Vistas

article

9.4 : Teorema impulso-momento

Momento lineal, impulso y colisiones

10.4K Vistas

article

9.5 : Conservación de la cantidad de movimiento: introducción

Momento lineal, impulso y colisiones

13.8K Vistas

article

9.6 : Conservación de la cantidad de movimiento: Resolución de problemas

Momento lineal, impulso y colisiones

9.3K Vistas

article

9.7 : Tipos de colisión - I

Momento lineal, impulso y colisiones

6.1K Vistas

article

9.8 : Tipos de colisión - II

Momento lineal, impulso y colisiones

6.3K Vistas

article

9.10 : Colisiones elásticas: caso práctico

Momento lineal, impulso y colisiones

9.4K Vistas

article

9.11 : Colisiones en dimensiones múltiples: introducción

Momento lineal, impulso y colisiones

4.1K Vistas

article

9.12 : Colisiones en dimensiones múltiples: resolución de problemas

Momento lineal, impulso y colisiones

3.3K Vistas

article

9.13 : Centro de masa: introducción

Momento lineal, impulso y colisiones

10.0K Vistas

article

9.14 : Significado del Centro de Masa

Momento lineal, impulso y colisiones

5.9K Vistas

article

9.15 : Energía Potencial Gravitacional para Objetos Extendidos

Momento lineal, impulso y colisiones

1.3K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados