Anmelden

An elastic collision is one that conserves both internal kinetic energy and momentum. Internal kinetic energy is the sum of the kinetic energies of the objects in a system. Truly elastic collisions can only be achieved with subatomic particles, such as electrons striking nuclei. Macroscopic collisions can be very nearly, but not quite, elastic, as some kinetic energy is always converted into other forms of energy such as heat transfer due to friction and sound. An example of a nearly macroscopic collision is that of two steel blocks on ice. Another nearly elastic collision is between two carts with spring bumpers on an air track. Icy surfaces and air tracks are nearly frictionless, more readily allowing nearly elastic collisions on them.

To solve problems involving one-dimensional elastic collisions between two objects, we can use the equations for conservation of momentum and conservation of internal kinetic energy. Firstly, the equation for conservation of momentum for two objects in a one-dimensional collision implies that the momentum of the system before and after the collision is equal. Secondly, an elastic collision conserves internal kinetic energy, and so the sum of kinetic energies before the collision equals the sum after the collision.

This text is adapted from Openstax, University Physics Volume 1, Section 9.4: Types of Collisions.

Tags
Elastic CollisionsConservation Of MomentumConservation Of Kinetic EnergySubatomic ParticlesMacroscopic CollisionsSteel BlocksAir TrackFrictionless SurfacesOne Dimensional CollisionMomentum ConservationKinetic Energy Conservation

Aus Kapitel 9:

article

Now Playing

9.9 : Elastic Collisions: Introduction

Linear Momentum, Impulse and Collisions

8.5K Ansichten

article

9.1 : Linearer Impuls

Linear Momentum, Impulse and Collisions

13.0K Ansichten

article

9.2 : Kraft und Schwung

Linear Momentum, Impulse and Collisions

11.4K Ansichten

article

9.3 : Impuls

Linear Momentum, Impulse and Collisions

14.4K Ansichten

article

9.4 : Impuls-Impuls-Satz

Linear Momentum, Impulse and Collisions

10.4K Ansichten

article

9.5 : Impulserhaltung: Einleitung

Linear Momentum, Impulse and Collisions

13.8K Ansichten

article

9.6 : Impulserhaltung: Problemlösung

Linear Momentum, Impulse and Collisions

9.3K Ansichten

article

9.7 : Arten von Kollisionen - I

Linear Momentum, Impulse and Collisions

6.1K Ansichten

article

9.8 : Arten von Kollisionen - II

Linear Momentum, Impulse and Collisions

6.3K Ansichten

article

9.10 : Elastische Kollisionen: Fallstudie

Linear Momentum, Impulse and Collisions

9.4K Ansichten

article

9.11 : Kollisionen in mehreren Dimensionen: Einführung

Linear Momentum, Impulse and Collisions

4.1K Ansichten

article

9.12 : Kollisionen in mehreren Dimensionen: Problemlösung

Linear Momentum, Impulse and Collisions

3.3K Ansichten

article

9.13 : Schwerpunkt: Einführung

Linear Momentum, Impulse and Collisions

10.0K Ansichten

article

9.14 : Bedeutung des Massenschwerpunkts

Linear Momentum, Impulse and Collisions

5.9K Ansichten

article

9.15 : Potentielle Gravitationsenergie für ausgedehnte Objekte

Linear Momentum, Impulse and Collisions

1.3K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten