Iniciar sesión

In the case of circular motion, the linear tangential speed of a particle at a radius from the axis of rotation is related to the angular velocity by the relation:

Equation1

This could also apply to points on a rigid body rotating about a fixed axis. In a circular motion, both uniform and nonuniform, there exists a centripetal acceleration. The centripetal acceleration vector points inward from the particle executing circular motion toward the axis of rotation. In uniform circular motion, when the angular velocity is constant and the angular acceleration is zero, we observe a linear acceleration—that is, centripetal acceleration—since the tangential speed is constant. If the circular motion is nonuniform, then the rotating system has an angular acceleration, and we have both a linear centripetal acceleration and linear tangential acceleration.

The centripetal acceleration is due to a change in the direction of tangential velocity, whereas the tangential acceleration is due to any change in the magnitude of the tangential velocity. The tangential and centripetal acceleration vectors are always perpendicular to each other. To complete this description, a total linear acceleration vector is assigned to a point on a rotating rigid body or a particle executing circular motion at a radius r from a fixed axis. The total linear acceleration vector is the vector sum of the centripetal and tangential accelerations. The total linear acceleration vector in the case of nonuniform circular motion points at an angle between the centripetal and tangential acceleration vectors.

This text is adapted from Openstax, University Physics Volume 1, Section 10.3: Relating Angular and Translational Quantities.

Tags
Keyword Extraction Circular MotionLinear Tangential SpeedAngular VelocityCentripetal AccelerationUniform Circular MotionAngular AccelerationLinear Centripetal AccelerationLinear Tangential AccelerationTotal Linear Acceleration VectorTranslational Quantities

Del capítulo 10:

article

Now Playing

10.6 : Relacionando magnitudes angulares y lineales - II

Rotación y cuerpos rígidos

5.1K Vistas

article

10.1 : Velocidad angular y desplazamiento

Rotación y cuerpos rígidos

11.6K Vistas

article

10.2 : Velocidad angular y aceleración

Rotación y cuerpos rígidos

8.4K Vistas

article

10.3 : Rotación con aceleración angular constante - I

Rotación y cuerpos rígidos

6.4K Vistas

article

10.4 : Rotación con aceleración angular constante - II

Rotación y cuerpos rígidos

5.7K Vistas

article

10.5 : Relacionando magnitudes angulares y lineales - I

Rotación y cuerpos rígidos

6.2K Vistas

article

10.7 : Momento de inercia

Rotación y cuerpos rígidos

8.8K Vistas

article

10.8 : Momento de inercia y energía cinética rotacional

Rotación y cuerpos rígidos

6.9K Vistas

article

10.9 : Momento de inercia: cálculos

Rotación y cuerpos rígidos

6.4K Vistas

article

10.10 : Momentos de inercia de objetos compuestos

Rotación y cuerpos rígidos

5.8K Vistas

article

10.11 : Teorema de los ejes paralelos

Rotación y cuerpos rígidos

6.2K Vistas

article

10.12 : Teorema del eje perpendicular

Rotación y cuerpos rígidos

2.4K Vistas

article

10.13 : Transformación vectorial en sistemas de coordenadas rotatorias

Rotación y cuerpos rígidos

1.2K Vistas

article

10.14 : Fuerza de Coriolis

Rotación y cuerpos rígidos

2.7K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados